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Applicability

Two-stage linear stochastic programs with recourse where

▶ ξ is a discrete random variable,

▶ X = Rn1
+ ,

▶ Y = Rn2
+ .

The integer case requires some adjustments.



Recall

The deterministic equivalent problem

min z = cT x + Q(x)

s.t.Ax = b

x ≥ 0

where

Q(x) =
S∑

s=1

πsQ(x , ξs)

and
Q(x , ξs) = min

y
{qTs y |Wsy = hs − Tsx , y ≥ 0}.



Recall

K1 = {x |Ax = b, x ≥ 0}

K2(ξs) = {x |∃y ≥ 0, s.t.Wsy = hs − Tsx}

K2 =
⋂
ξ∈Ξ

K2(ξ)

▶ K2 is a closed and convex polyhedron

▶ Q(x) is piecewise linear and convex in x

This will help..
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A reformulation of the DEP

min z = cT x + Q(x)

s.t.x ∈ K1 ∩ K2



A reformulation of the DEP

If we introduce a variable ϕ we can obtain another reformulation

min z = cT x + ϕ

s.t.x ∈ K1

x ∈ K2

ϕ ≥ Q(x)



A reformulation of the DEP

Polyhedral formulation, but with way too many constraints..

Idea! Drop x ∈ K2 and ϕ ≥ Q(x) and reconstruct them
iteratively... (We may not need all their constraints).



The Master Problem

At a generic iteration..

min z = cT x + ϕ

s.t.x ∈ K1

fi (x) ≤ 0 i = 1, . . . , I ,

gj(x , ϕ) ≤ 0 j = 1, . . . , J



The Master Problem

At a generic iteration..

min z = cT x + ϕ

s.t.x ∈ K1

fi (x) ≤ 0 i = 1, . . . , I ,

gj(x , ϕ) ≤ 0 j = 1, . . . , J

Initially I = J = 0.
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Feasibility

At iteration v we solve MP and find (xv , ϕv ).

Does xv ∈ K2? Let’s check:

For each s we solve the feasibility subproblem.



Feasibility

FP(xv , ξs) = min
y ,v+,v−

e⊤v++e⊤v−

s.t.Wsy+Iv+−Iv− = hs − Tsx
v ,

y , v+, v− ≥ 0

where e⊤ = (1, . . . , 1) and I is the identity matrix.

Find the differences:

Q(xv , ξs) = min
y
{qTs y |Wsy = hs − Tsx

v , y ≥ 0}.
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Feasibility

FP(xv , ξs) = min
y ,v+,v−

{e⊤v++e⊤v−|Wsy+Iv+−Iv− = hs−Tsx
v , y , v+, v− ≥ 0}

Its dual

FD(xv , ξs) = max
σ

{σ⊤(hs − Tsx
v )|σ⊤Ws ≤ 0, σ⊤I ≤ e⊤,−σ⊤I ≤ e⊤}

Both are always feasible. Strong duality FD(xv , ξs) = FP(xv , ξs).



Feasibility

If FP(xv , ξs) = FD(xv , ξs) = 0 for all s then xv ∈ K2 otherwise it
does not.

If xv /∈ K2 we need to tell MP that xv is not a good solution and
must be cut off.



Feasibility

If FP(xv , ξs) = FD(xv , ξs) = 0 for all s then xv ∈ K2 otherwise it
does not.

If xv /∈ K2 we need to tell MP that xv is not a good solution and
must be cut off.



Feasibility

Consider solution xv to MP. If FD(xv , ξs) > 0 for some s, let σv
s

be its optimal solution. Then, the inequality

(σv
s )

⊤(hs − Tsx) ≤ 0

is violated by xv /∈ K2.

Proof



Feasibility

Adding inequality
(σv

s )
⊤(hs − Tsx) ≤ 0

to MP will cut off solution xv at the next iteration. We call it a
feasibility cut.



Feasibility

Solution x l ∈ K2 satisfies feasibility cuts

(σv
s )

⊤(hs − Tsx) ≤ 0

Proof



Feasibility

Summary:

▶ we know how verify xv ∈ K2,

▶ we know that (σv
s )

⊤(hs − Tsx) ≤ 0 will cut off infeasible
solution xv /∈ K2,

▶ we know that (σv
s )

⊤(hs − Tsx) ≤ 0 will not cut off feasible
solutions.
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Optimality

Assume (xv , ϕv ) is now such that

xv ∈ K2

We should now verify whether

ϕv ≥ Q(xv )

We need to calculate

Q(xv ) =
S∑

s=1

πsQ(xv , ξs)



Optimality

For s = 1, . . . ,S solve

QP(xv , ξs) = min
y
{q⊤s y |Wsy = hs − Tsx

v , y ≥ 0}

or its dual

QD(xv , ξs) = max
ρ

{ρ⊤(hs − Tsx
v )|ρ⊤Ws ≤ q⊤s }



Optimality

Observe:

▶ QP(xv , ξs) is feasible (and, we assume, bounded)

▶ QP(xv , ξs) = QD(xv , ξs),

▶ Q(xv ) =
∑S

s=1 πsQ
P(xv , ξs) =

∑S
s=1 πsQ

D(xv , ξs).



Optimality

If ϕv < Q(xv ), then (xv , ϕv ) violates

ϕ ≥
S∑

s=1

πs(ρ
v
s )

⊤(hs − Tsx)

where ρvs is the optimal solution to QD(xv , ξs). Proof



Optimality

(x l , ϕl), such that ϕl ≥ Q(x l), satisfies

ϕ ≥
S∑

s=1

πs(ρ
v
s )

⊤(hs − Tsx)

Proof



Optimality

Summarizing:

▶ We know how to check optimality,

▶ We know how to cut off (xv , ϕv ) such that ϕv < Q(xv ),

▶ We know that optimality cuts preserve (x l , ϕl) such that
ϕl ≥ Q(x l).
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Putting everything together

1. Solve MP (initially no cuts) to find (xv , ϕv )

2. For s = 1, . . . ,S solve FD(xv , ξs)

3. If FD(xv , ξs) > 0 for some s, add a feasibility cut and return
to STEP 1.

4. For s = 1, . . . ,S solve QD(xv , ξs) and calculate Q(xv )

5. If ϕv ≥ Q(xv ), STOP (xv , ϕv ) is optimal otherwise add an
optimality cut and return to STEP 1.
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Putting everything together

1. Solve MP (initially no cuts) to find (xv , ϕv )

2. For s = 1, . . . ,S solve FD(xv , ξs)

3. If FD(xv , ξs) > 0 for some s, add a feasibility cut and return
to STEP 1.

4. For s = 1, . . . ,S solve QD(xv , ξs) and calculate Q(xv )

5. If ϕv ≥ Q(xv ), STOP (xv , ϕv ) is optimal otherwise add an
optimality cut and return to STEP 1.



A finite algorithm

The algorithm converges

▶ finitely many possible cuts

▶ if (at most) all cuts are available, the solution to MP is
optimal.



Bounds

c⊤xv + ϕv ≤ z∗ ≤ c⊤xv + Q(xv )
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Dealing with integers

Integer variables in the first stage

VS

Integer variables in the second stage



Dealing with integers

Integer variables in the first stage:

Embed the L-Shaped Method into Branch and Bound.



Dealing with integers

Integer variables in the second stage (and binary first stage):

Let L ≤ Q(x) ∀x

Let xv integer solution at node v

Let Iv the indices for which xv = 1
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Dealing with integers

Integer variables in the second stage (and binary first stage):

Let L ≤ Q(x) ∀x

Let xv integer solution at node v

Let Iv the indices for which xv = 1



Dealing with integers

Integer variables in the second stage (and binary first stage):

ϕ ≥ (Q(xv )− L)|
∑
i∈Iv

xi −
∑
i /∈Iv

xi | − (Q(xv )− L)(|Iv | − 1) + L



Dealing with integers

Integer variables in the second stage (and binary first stage):

How does it work?

x = xv =⇒ ϕ ≥ Q(xv )

x ̸= xv =⇒ ϕ ≥ Lv ≤ L



Dealing with integers

Integer variables in the second stage (and binary first stage):

The bound can be improved by looking in the neighborhood of xv .

Classical (duality based) L-Shaped cuts on the LP relaxation help a
lot!



Exercise

Exercise (approx. 50 min)

https://tinyurl.com/sptutorial3

https://tinyurl.com/sptutorial3
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Feasibility

If FD(xv , ξs) > 0 for some s, let σv
s be its optimal solution. The

feasibility cut
(σv

s )
⊤(hs − Tsx) ≤ 0

cuts off the second-stage-infeasible solution xv /∈ K2.

Proof.
Assume xv /∈ K2 → ∃ s with FD(xv , ξs) = FP(xv , ξs) > 0

FD(xv , ξs) = (σv
s )

⊤(hs − Tsx
v ) > 0

σv
s optimal to FD(xv , ξs) →xv does not satisfy

(σv
s )

⊤(hs − Tsx) ≤ 0

Back



Feasibility

Solution x l ∈ K2 satisfies feasibility cuts

(σv
s )

⊤(hs − Tsx) ≤ 0

Proof.
Assume x l ∈ K2, then

FD(x l , ξs) = FP(x l , ξs) = 0 s = 1, . . . ,S

Solution σv
s to FD(xv , ξs) is feasible for problem FD(x l , ξs) but

not optimal.

0 = FD(x l , ξs) = (σl
s)

⊤(hs − Tsx
l) ≥ (σv

s )
⊤(hs − Tsx

l)

. Thus x l ∈ K2 does not violate the feasibility cut.

Back



Optimality

Proof optimality cuts.

Proof.
Assume ϕv < Q(xv ). Then we have

ϕv < Q(xv ) =
S∑

s=1

πsQ
D(xv , ξs) =

S∑
s=1

πs(ρ
v
s )

⊤(hs − Tsx
v )

ρvs optimal for Q(xv , ξs). Constraint

ϕ ≥
S∑

s=1

πs(ρ
v
s )

⊤(hs − Tsx)

is not satisfied by (xv , ϕv ).

Back



Optimality

Proof.
Assume ϕl ≥ Q(x l)

ϕl ≥ Q(x l) =
S∑

s=1

πsQ
D(x l , ξs) =

S∑
s=1

πs(ρ
l
s)

⊤(hs − Tsx
l)

S∑
s=1

πs(ρ
l
s)

⊤(hs − Tsx
l) ≥

S∑
s=1

πs(ρ
v
s )

⊤(hs − Tsx
l)

ρvs is feasible for QD(x l , ξs) while ρls is optimal. Thus

ϕl ≥
S∑

s=1

πs(ρ
v
s )

⊤(hs − Tsx
l)

Back
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