Stochastic Programming: A tutorial - part II DORS Tutorials 14/02/2023

Giovanni Pantuso

Department of Mathematical Sciences
University of Copenhagen
Copenhagen, Denmark
gp@math.ku.dk

Table of Contents

Overview

Feasibility

Optimality

The algorithm

Dealing with integers

Some Proofs

Applicability

Two-stage linear stochastic programs with recourse where

- $\boldsymbol{\xi}$ is a discrete random variable,
- $\mathcal{X}=\mathbb{R}_{+}^{n_{1}}$,
- $\mathcal{Y}=\mathbb{R}_{+}^{n_{2}}$.

The integer case requires some adjustments.

Recall

The deterministic equivalent problem

$$
\begin{aligned}
& \min z=c^{T} x+Q(x) \\
& \text { s.t. } A x=b \\
& \quad x \geq 0
\end{aligned}
$$

where

$$
Q(x)=\sum_{s=1}^{S} \pi_{s} Q\left(x, \xi_{s}\right)
$$

and

$$
Q\left(x, \xi_{s}\right)=\min _{y}\left\{q_{s}^{T} y \mid W_{s} y=h_{s}-T_{s} x, y \geq 0\right\}
$$

Recall

$$
\mathcal{K}_{1}=\{x \mid A x=b, x \geq 0\}
$$

Recall

$$
\mathcal{K}_{1}=\{x \mid A x=b, x \geq 0\}
$$

$$
\mathcal{K}_{2}\left(\xi_{s}\right)=\left\{x \mid \exists y \geq 0, \text { s.t. } W_{s} y=h_{s}-T_{s} x\right\}
$$

Recall

$$
\begin{gathered}
\mathcal{K}_{1}=\{x \mid A x=b, x \geq 0\} \\
\mathcal{K}_{2}\left(\xi_{s}\right)=\left\{x \mid \exists y \geq 0, \text { s.t. } W_{s} y=h_{s}-T_{s} x\right\} \\
\mathcal{K}_{2}=\bigcap_{\xi \in \equiv} \mathcal{K}_{2}(\xi)
\end{gathered}
$$

Recall

$$
\begin{gathered}
\mathcal{K}_{1}=\{x \mid A x=b, x \geq 0\} \\
\mathcal{K}_{2}\left(\xi_{s}\right)=\left\{x \mid \exists y \geq 0, \text { s.t. } W_{s} y=h_{s}-T_{s} x\right\} \\
\mathcal{K}_{2}=\bigcap_{\xi \in \equiv} \mathcal{K}_{2}(\xi)
\end{gathered}
$$

- \mathcal{K}_{2} is a closed and convex polyhedron
- $Q(x)$ is piecewise linear and convex in x

This will help..

A reformulation of the DEP

$$
\begin{gathered}
\min z=c^{\top} x+Q(x) \\
\text { s.t. } x \in \mathcal{K}_{1} \cap \mathcal{K}_{2}
\end{gathered}
$$

A reformulation of the DEP

If we introduce a variable ϕ we can obtain another reformulation

$$
\begin{aligned}
\min z & =c^{T} x+\phi \\
\text { s.t. } x & \in \mathcal{K}_{1} \\
x & \in \mathcal{K}_{2} \\
\phi & \geq Q(x)
\end{aligned}
$$

A reformulation of the DEP

Polyhedral formulation, but with way too many constraints..

Idea! Drop $x \in \mathcal{K}_{2}$ and $\phi \geq Q(x)$ and reconstruct them iteratively... (We may not need all their constraints).

The Master Problem

At a generic iteration..

$$
\begin{array}{cl}
\min z=c^{T} x+\phi & \\
\text { s.t. } x \in \mathcal{K}_{1} & \\
f_{i}(x) \leq 0 & i=1, \ldots, l, \\
g_{j}(x, \phi) \leq 0 & j=1, \ldots, J
\end{array}
$$

The Master Problem

At a generic iteration..

$$
\begin{array}{cl}
\min z=c^{\top} x+\phi & \\
\text { s.t. } x \in \mathcal{K}_{1} & \\
f_{i}(x) \leq 0 & i=1, \ldots, l, \\
g_{j}(x, \phi) \leq 0 & j=1, \ldots, J
\end{array}
$$

Initially $I=J=0$.

Table of Contents

Overview

Feasibility

Optimality

The algorithm

Dealing with integers

Some Proofs

Feasibility

At iteration v we solve MP and find $\left(x^{v}, \phi^{v}\right)$.
Does $x^{\vee} \in \mathcal{K}_{2}$? Let's check:

For each s we solve the feasibility subproblem.

Feasibility

$$
\begin{aligned}
& F^{P}\left(x^{v}, \xi_{s}\right)=\min _{y, v^{+}, v^{-}} e^{\top} v^{+}+e^{\top} v^{-} \\
& \text {s.t. } W_{s} y+I v^{+}-l v^{-}=h_{s}-T_{s} x^{v}, \\
& y, v^{+}, v^{-} \geq 0
\end{aligned}
$$

where $e^{\top}=(1, \ldots, 1)$ and I is the identity matrix.

Feasibility

$$
\begin{aligned}
& F^{P}\left(x^{v}, \xi_{s}\right)=\min _{y, v^{+}, v^{-}} e^{\top} v^{+}+e^{\top} v^{-} \\
& \text {s.t. } W_{s} y+I v^{+}-l v^{-}=h_{s}-T_{s} x^{v}, \\
& y, v^{+}, v^{-} \geq 0
\end{aligned}
$$

where $e^{\top}=(1, \ldots, 1)$ and I is the identity matrix.

Find the differences:

$$
Q\left(x^{\vee}, \xi_{s}\right)=\min _{y}\left\{q_{s}^{T} y \mid W_{s} y=h_{s}-T_{s} x^{v}, y \geq 0\right\}
$$

Feasibility

$F^{P}\left(x^{v}, \xi_{s}\right)=\min _{y, v^{+}, v^{-}}\left\{e^{\top} v^{+}+e^{\top} v^{-} \mid W_{s} y+l v^{+}-l v^{-}=h_{s}-T_{s} x^{v}, y, v^{+}, v^{-} \geq 0\right\}$
Its dual

$$
F^{D}\left(x^{v}, \xi_{s}\right)=\max _{\sigma}\left\{\sigma^{\top}\left(h_{s}-T_{s} x^{v}\right) \mid \sigma^{\top} W_{s} \leq 0, \sigma^{\top} I \leq e^{\top},-\sigma^{\top} I \leq e^{\top}\right\}
$$

Both are always feasible. Strong duality $F^{D}\left(x^{v}, \xi_{s}\right)=F^{P}\left(x^{v}, \xi_{s}\right)$.

Feasibility

If $F^{P}\left(x^{v}, \xi_{s}\right)=F^{D}\left(x^{v}, \xi_{s}\right)=0$ for all s then $x^{v} \in \mathcal{K}_{2}$ otherwise it does not.

Feasibility

If $F^{P}\left(x^{v}, \xi_{s}\right)=F^{D}\left(x^{v}, \xi_{s}\right)=0$ for all s then $x^{v} \in \mathcal{K}_{2}$ otherwise it does not.

If $x^{v} \notin \mathcal{K}_{2}$ we need to tell MP that x^{v} is not a good solution and must be cut off.

Feasibility

Consider solution x^{v} to MP. If $F^{D}\left(x^{v}, \xi_{s}\right)>0$ for some s, let σ_{s}^{v} be its optimal solution. Then, the inequality

$$
\left(\sigma_{s}^{\nu}\right)^{\top}\left(h_{s}-T_{s} x\right) \leq 0
$$

is violated by $x^{\vee} \notin \mathcal{K}_{2}$.

Feasibility

Adding inequality

$$
\left(\sigma_{s}^{\nu}\right)^{\top}\left(h_{s}-T_{s} x\right) \leq 0
$$

to MP will cut off solution x^{v} at the next iteration. We call it a feasibility cut.

Feasibility

Solution $x^{\prime} \in \mathcal{K}_{2}$ satisfies feasibility cuts

$$
\left(\sigma_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x\right) \leq 0
$$

Feasibility

Summary:

- we know how verify $x^{\vee} \in \mathcal{K}_{2}$,
- we know that $\left(\sigma_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x\right) \leq 0$ will cut off infeasible solution $x^{v} \notin \mathcal{K}_{2}$,
- we know that $\left(\sigma_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x\right) \leq 0$ will not cut off feasible solutions.

Table of Contents

Overview

Feasibility

Optimality

The algorithm

Dealing with integers

Some Proofs

Optimality

Assume $\left(x^{v}, \phi^{v}\right)$ is now such that

$$
x^{v} \in \mathcal{K}_{2}
$$

We should now verify whether

$$
\phi^{v} \geq Q\left(x^{v}\right)
$$

We need to calculate

$$
Q\left(x^{v}\right)=\sum_{s=1}^{S} \pi_{s} Q\left(x^{v}, \xi_{s}\right)
$$

Optimality

For $s=1, \ldots, S$ solve

$$
Q^{P}\left(x^{v}, \xi_{s}\right)=\min _{y}\left\{q_{s}^{\top} y \mid W_{s} y=h_{s}-T_{s} x^{v}, y \geq 0\right\}
$$

or its dual

$$
Q^{D}\left(x^{\vee}, \xi_{s}\right)=\max _{\rho}\left\{\rho^{\top}\left(h_{s}-T_{s} x^{\vee}\right) \mid \rho^{\top} W_{s} \leq q_{s}^{\top}\right\}
$$

Optimality

Observe:

- $Q^{P}\left(x^{v}, \xi_{s}\right)$ is feasible (and, we assume, bounded)
- $Q^{P}\left(x^{v}, \xi_{s}\right)=Q^{D}\left(x^{v}, \xi_{s}\right)$,
- $Q\left(x^{v}\right)=\sum_{s=1}^{S} \pi_{s} Q^{P}\left(x^{v}, \xi_{s}\right)=\sum_{s=1}^{S} \pi_{s} Q^{D}\left(x^{v}, \xi_{s}\right)$.

Optimality

If $\phi^{v}<Q\left(x^{v}\right)$, then $\left(x^{v}, \phi^{v}\right)$ violates

$$
\phi \geq \sum_{s=1}^{S} \pi_{s}\left(\rho_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x\right)
$$

where ρ_{s}^{v} is the optimal solution to $Q^{D}\left(x^{v}, \xi_{s}\right)$.

Optimality

$\left(x^{\prime}, \phi^{\prime}\right)$, such that $\phi^{\prime} \geq Q\left(x^{\prime}\right)$, satisfies

$$
\phi \geq \sum_{s=1}^{S} \pi_{s}\left(\rho_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x\right)
$$

Optimality

Summarizing:

- We know how to check optimality,
- We know how to cut off (x^{v}, ϕ^{v}) such that $\phi^{v}<Q\left(x^{v}\right)$,
- We know that optimality cuts preserve $\left(x^{\prime}, \phi^{\prime}\right)$ such that $\phi^{\prime} \geq Q\left(x^{\prime}\right)$.

Table of Contents

Overview

Feasibility

Optimality

The algorithm

Dealing with integers

Some Proofs

Putting everything together

1. Solve MP (initially no cuts) to find $\left(x^{v}, \phi^{v}\right)$

Putting everything together

1. Solve MP (initially no cuts) to find (x^{v}, ϕ^{v})
2. For $s=1, \ldots, S$ solve $F^{D}\left(x^{v}, \xi_{s}\right)$

Putting everything together

1. Solve MP (initially no cuts) to find (x^{v}, ϕ^{v})
2. For $s=1, \ldots, S$ solve $F^{D}\left(x^{v}, \xi_{s}\right)$
3. If $F^{D}\left(x^{v}, \xi_{s}\right)>0$ for some s, add a feasibility cut and return to STEP 1 .

Putting everything together

1. Solve MP (initially no cuts) to find (x^{v}, ϕ^{v})
2. For $s=1, \ldots, S$ solve $F^{D}\left(x^{v}, \xi_{s}\right)$
3. If $F^{D}\left(x^{v}, \xi_{s}\right)>0$ for some s, add a feasibility cut and return to STEP 1.
4. For $s=1, \ldots, S$ solve $Q^{D}\left(x^{v}, \xi_{s}\right)$ and calculate $Q\left(x^{v}\right)$

Putting everything together

1. Solve MP (initially no cuts) to find (x^{v}, ϕ^{v})
2. For $s=1, \ldots, S$ solve $F^{D}\left(x^{v}, \xi_{s}\right)$
3. If $F^{D}\left(x^{v}, \xi_{s}\right)>0$ for some s, add a feasibility cut and return to STEP 1.
4. For $s=1, \ldots, S$ solve $Q^{D}\left(x^{v}, \xi_{s}\right)$ and calculate $Q\left(x^{v}\right)$
5. If $\phi^{v} \geq Q\left(x^{v}\right)$, STOP $\left(x^{v}, \phi^{v}\right)$ is optimal otherwise add an optimality cut and return to STEP 1 .

A finite algorithm

The algorithm converges

- finitely many possible cuts
- if (at most) all cuts are available, the solution to MP is optimal.

Bounds

$$
c^{\top} x^{v}+\phi^{v} \leq z^{*} \leq c^{\top} x^{v}+Q\left(x^{v}\right)
$$

Table of Contents

Overview

Feasibility

Optimality

The algorithm

Dealing with integers

Some Proofs

Dealing with integers

Integer variables in the first stage
VS

Integer variables in the second stage

Dealing with integers

Integer variables in the first stage:
Embed the L-Shaped Method into Branch and Bound.

Dealing with integers

Integer variables in the second stage (and binary first stage):
Let $L \leq Q(x) \quad \forall x$

Dealing with integers

Integer variables in the second stage (and binary first stage):
Let $L \leq Q(x) \quad \forall x$
Let x^{v} integer solution at node v

Dealing with integers

Integer variables in the second stage (and binary first stage):
Let $L \leq Q(x) \quad \forall x$
Let x^{v} integer solution at node v
Let \mathcal{I}_{v} the indices for which $x^{v}=1$

Dealing with integers

Integer variables in the second stage (and binary first stage):

$$
\phi \geq\left(Q\left(x^{v}\right)-L\right)\left|\sum_{i \in \mathcal{I}_{v}} x_{i}-\sum_{i \notin \mathcal{I}_{v}} x_{i}\right|-\left(Q\left(x^{v}\right)-L\right)\left(\left|\mathcal{I}_{v}\right|-1\right)+L
$$

Dealing with integers

Integer variables in the second stage (and binary first stage):
How does it work?

$$
\begin{aligned}
& x=x^{v} \Longrightarrow \phi \geq Q\left(x^{v}\right) \\
& x \neq x^{v} \Longrightarrow \phi \geq L^{v} \leq L
\end{aligned}
$$

Dealing with integers

Integer variables in the second stage (and binary first stage):
The bound can be improved by looking in the neighborhood of x^{v}.
Classical (duality based) L-Shaped cuts on the LP relaxation help a lot!

Exercise

Exercise (approx. 50 min)
https://tinyurl.com/sptutorial3

Table of Contents

Overview

Feasibility

Optimality

The algorithm

Dealing with integers

Some Proofs

Feasibility

If $F^{D}\left(x^{v}, \xi_{s}\right)>0$ for some s, let σ_{s}^{v} be its optimal solution. The feasibility cut

$$
\left(\sigma_{s}^{\nu}\right)^{\top}\left(h_{s}-T_{s} x\right) \leq 0
$$

cuts off the second-stage-infeasible solution $x^{\vee} \notin \mathcal{K}_{2}$.
Proof.
Assume $x^{v} \notin \mathcal{K}_{2} \rightarrow \exists s$ with $F^{D}\left(x^{v}, \xi_{s}\right)=F^{P}\left(x^{v}, \xi_{s}\right)>0$

$$
F^{D}\left(x^{v}, \xi_{s}\right)=\left(\sigma_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x^{v}\right)>0
$$

σ_{s}^{\vee} optimal to $F^{D}\left(x^{\vee}, \xi_{s}\right) \rightarrow x^{\vee}$ does not satisfy

$$
\left(\sigma_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x\right) \leq 0
$$

Feasibility

Solution $x^{\prime} \in \mathcal{K}_{2}$ satisfies feasibility cuts

$$
\left(\sigma_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x\right) \leq 0
$$

Proof.
Assume $x^{\prime} \in \mathcal{K}_{2}$, then

$$
F^{D}\left(x^{\prime}, \xi_{s}\right)=F^{P}\left(x^{\prime}, \xi_{s}\right)=0 \quad s=1, \ldots, S
$$

Solution σ_{s}^{v} to $F^{D}\left(x^{v}, \xi_{s}\right)$ is feasible for problem $F^{D}\left(x^{\prime}, \xi_{s}\right)$ but not optimal.

$$
0=F^{D}\left(x^{\prime}, \xi_{s}\right)=\left(\sigma_{s}^{\prime}\right)^{\top}\left(h_{s}-T_{s} x^{\prime}\right) \geq\left(\sigma_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x^{\prime}\right)
$$

. Thus $x^{\prime} \in \mathcal{K}_{2}$ does not violate the feasibility cut.

Optimality

Proof optimality cuts.
Proof.
Assume $\phi^{v}<Q\left(x^{v}\right)$. Then we have

$$
\phi^{v}<Q\left(x^{v}\right)=\sum_{s=1}^{S} \pi_{s} Q^{D}\left(x^{v}, \xi_{s}\right)=\sum_{s=1}^{S} \pi_{s}\left(\rho_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x^{v}\right)
$$

ρ_{s}^{v} optimal for $Q\left(x^{v}, \xi_{s}\right)$. Constraint

$$
\phi \geq \sum_{s=1}^{S} \pi_{s}\left(\rho_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x\right)
$$

is not satisfied by $\left(x^{v}, \phi^{v}\right)$.

Optimality

Proof.
Assume $\phi^{\prime} \geq Q\left(x^{\prime}\right)$

$$
\begin{gathered}
\phi^{\prime} \geq Q\left(x^{\prime}\right)=\sum_{s=1}^{S} \pi_{s} Q^{D}\left(x^{\prime}, \xi_{s}\right)=\sum_{s=1}^{S} \pi_{s}\left(\rho_{s}^{\prime}\right)^{\top}\left(h_{s}-T_{s} x^{\prime}\right) \\
\sum_{s=1}^{S} \pi_{s}\left(\rho_{s}^{\prime}\right)^{\top}\left(h_{s}-T_{s} x^{\prime}\right) \geq \sum_{s=1}^{S} \pi_{s}\left(\rho_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x^{\prime}\right)
\end{gathered}
$$

ρ_{s}^{v} is feasible for $Q^{D}\left(x^{\prime}, \xi_{s}\right)$ while ρ_{s}^{\prime} is optimal. Thus

$$
\phi^{\prime} \geq \sum_{s=1}^{S} \pi_{s}\left(\rho_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x^{\prime}\right)
$$

