Stochastic Programming: A tutorial – part II DORS Tutorials 14/02/2023

Giovanni Pantuso

Department of Mathematical Sciences University of Copenhagen Copenhagen, Denmark gp@math.ku.dk

Table of Contents

Overview

Feasibility

Optimality

The algorithm

Dealing with integers

Some Proofs

Applicability

Two-stage linear stochastic programs with recourse where

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < ○ < ○</p>

- $\boldsymbol{\xi}$ is a discrete random variable,
- $\blacktriangleright \mathcal{X} = \mathbb{R}^{n_1}_+,$
- $\blacktriangleright \mathcal{Y} = \mathbb{R}^{n_2}_+.$

The integer case requires some adjustments.

The deterministic equivalent problem

$$min z = c^{T}x + Q(x)$$

s.t. $Ax = b$
 $x \ge 0$

where

$$Q(x) = \sum_{s=1}^{S} \pi_s Q(x,\xi_s)$$

and

$$Q(x,\xi_s) = \min_{y} \{q_s^{\mathsf{T}} y | W_s y = h_s - T_s x, y \ge 0\}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\mathcal{K}_1 = \{x | Ax = b, x \ge 0\}$$

$$\mathcal{K}_1 = \{x | Ax = b, x \ge 0\}$$

 $\mathcal{K}_2(\xi_s) = \{x | \exists y \ge 0, ext{s.t.} W_s y = h_s - T_s x\}$

$$\mathcal{K}_1 = \{x | Ax = b, x \ge 0\}$$
$$\mathcal{K}_2(\xi_s) = \{x | \exists y \ge 0, \text{s.t.} W_s y = h_s - T_s x\}$$
$$\mathcal{K}_2 = \bigcap_{\xi \in \Xi} \mathcal{K}_2(\xi)$$

$$\mathcal{K}_1 = \{x | Ax = b, x \ge 0\}$$

 $\mathcal{K}_2(\xi_s) = \{x | \exists y \ge 0, \text{s.t.} W_s y = h_s - T_s x\}$

$$\mathcal{K}_2 = \bigcap_{\xi \in \Xi} \mathcal{K}_2(\xi)$$

*K*₂ is a closed and convex polyhedron
 Q(*x*) is piecewise linear and convex in *x* This will help..

A reformulation of the DEP

$$\min z = c^T x + Q(x)$$

s.t. $x \in \mathcal{K}_1 \cap \mathcal{K}_2$

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

A reformulation of the DEP

If we introduce a variable ϕ we can obtain another reformulation

 $\min z = c^T x + \phi$ s.t. $x \in \mathcal{K}_1$ $x \in \mathcal{K}_2$ $\phi \ge Q(x)$

A reformulation of the DEP

Polyhedral formulation, but with way too many constraints..

Idea! Drop $x \in \mathcal{K}_2$ and $\phi \ge Q(x)$ and reconstruct them iteratively... (We may not need all their constraints).

The Master Problem

At a generic iteration..

$$\begin{aligned} \min z &= c^T x + \phi \\ \text{s.t.} x &\in \mathcal{K}_1 \\ f_i(x) &\leq 0 \\ g_j(x,\phi) &\leq 0 \end{aligned} \qquad \begin{array}{l} i &= 1, \dots, I, \\ j &= 1, \dots, J \end{aligned}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

The Master Problem

At a generic iteration..

$$\begin{aligned} \min z &= c^T x + \phi \\ \text{s.t.} x &\in \mathcal{K}_1 \\ f_i(x) &\leq 0 \\ g_j(x, \phi) &\leq 0 \end{aligned} \qquad \begin{array}{l} i &= 1, \dots, I, \\ j &= 1, \dots, J \end{aligned}$$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Initially I = J = 0.

Table of Contents

Overview

Feasibility

Optimality

The algorithm

Dealing with integers

Some Proofs

At iteration v we solve MP and find (x^{ν}, ϕ^{ν}) .

Does $x^{v} \in \mathcal{K}_2$? Let's check:

For each s we solve the *feasibility subproblem*.

$$F^{P}(x^{v},\xi_{s}) = \min_{y,v^{+},v^{-}} e^{\top} v^{+} + e^{\top} v^{-}$$

s.t. $W_{s}y + lv^{+} - lv^{-} = h_{s} - T_{s}x^{v},$
 $y, v^{+}, v^{-} \ge 0$

where $e^{ op} = (1, \dots, 1)$ and I is the identity matrix.

・ロト・日下・日下・日 うへぐ

$$F^{P}(x^{v},\xi_{s}) = \min_{y,v^{+},v^{-}} e^{\top} v^{+} + e^{\top} v^{-}$$

s.t. $W_{s}y + lv^{+} - lv^{-} = h_{s} - T_{s}x^{v},$
 $y, v^{+}, v^{-} \ge 0$

where $e^{\top} = (1, \dots, 1)$ and I is the identity matrix.

Find the differences:

$$Q(x^{v},\xi_{s}) = \min_{y} \{q_{s}^{T} y | W_{s}y = h_{s} - T_{s}x^{v}, y \geq 0\}.$$

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$F^{P}(x^{v},\xi_{s}) = \min_{y,v^{+},v^{-}} \{ e^{\top}v^{+} + e^{\top}v^{-} | W_{s}y + Iv^{+} - Iv^{-} = h_{s} - T_{s}x^{v}, y, v^{+}, v^{-} \ge 0 \}$$

Its dual
$$F^{D}(x^{v},\xi_{s}) = \max_{\sigma} \{ \sigma^{\top}(h_{s} - T_{s}x^{v}) | \sigma^{\top}W_{s} \le 0, \sigma^{\top}I \le e^{\top}, -\sigma^{\top}I \le e^{\top} \}$$

Both are always feasible. Strong duality $F^D(x^v, \xi_s) = F^P(x^v, \xi_s)$.

If $F^{P}(x^{v},\xi_{s}) = F^{D}(x^{v},\xi_{s}) = 0$ for all s then $x^{v} \in \mathcal{K}_{2}$ otherwise it does not.

If $F^{P}(x^{\nu},\xi_{s}) = F^{D}(x^{\nu},\xi_{s}) = 0$ for all s then $x^{\nu} \in \mathcal{K}_{2}$ otherwise it does not.

If $x^{\nu} \notin \mathcal{K}_2$ we need to tell MP that x^{ν} is not a good solution and must be cut off.

Consider solution x^{ν} to MP. If $F^{D}(x^{\nu}, \xi_{s}) > 0$ for some s, let σ_{s}^{ν} be its optimal solution. Then, the inequality

$$(\sigma_s^v)^ op(h_s-T_sx)\leq 0$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

is violated by $x^{\nu} \notin \mathcal{K}_2$.

Proof

Adding inequality

$$(\sigma_s^v)^{ op}(h_s - T_s x) \leq 0$$

4 日 ト 4 目 ト 4 目 ト 4 目 - 9 4 (や)

to MP will cut off solution x^{ν} at the next iteration. We call it a *feasibility cut*.

Solution $x^{l} \in \mathcal{K}_{2}$ satisfies feasibility cuts

$$(\sigma_s^v)^{\top}(h_s - T_s x) \leq 0$$

4 日 ト 4 目 ト 4 目 ト 4 目 - 9 4 (や)

Proof

Summary:

- we know how verify $x^{v} \in \mathcal{K}_{2}$,
- we know that (σ^v_s)[⊤](h_s − T_sx) ≤ 0 will cut off infeasible solution x^v ∉ K₂,
- we know that $(\sigma_s^{\nu})^{\top}(h_s T_s x) \leq 0$ will not cut off feasible solutions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Table of Contents

Overview

Feasibility

Optimality

The algorithm

Dealing with integers

Some Proofs

Assume (x^{ν}, ϕ^{ν}) is now such that

$$x^{v} \in \mathcal{K}_{2}$$

We should now verify whether

$$\phi^{v} \geq Q(x^{v})$$

We need to calculate

$$Q(x^{\nu}) = \sum_{s=1}^{S} \pi_s Q(x^{\nu}, \xi_s)$$

For
$$s = 1, ..., S$$
 solve

$$Q^{P}(x^{v}, \xi_{s}) = \min_{y} \{q_{s}^{\top} y | W_{s} y = h_{s} - T_{s} x^{v}, y \ge 0\}$$

or its dual

$$Q^{D}(x^{\mathbf{v}},\xi_{s}) = \max_{\rho} \{\rho^{\top}(h_{s}-T_{s}x^{\mathbf{v}}) | \rho^{\top}W_{s} \leq q_{s}^{\top} \}$$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Observe:

• $Q^P(x^v, \xi_s)$ is feasible (and, we assume, bounded)

$$\blacktriangleright Q^P(x^v,\xi_s) = Q^D(x^v,\xi_s),$$

• $Q(x^{\nu}) = \sum_{s=1}^{S} \pi_s Q^P(x^{\nu}, \xi_s) = \sum_{s=1}^{S} \pi_s Q^D(x^{\nu}, \xi_s).$

If $\phi^{
u} < Q(x^{
u})$, then $(x^{
u}, \phi^{
u})$ violates

$$\phi \geq \sum_{s=1}^{S} \pi_s(\rho_s^v)^\top (h_s - T_s x)$$

where ρ_s^v is the optimal solution to $Q^D(x^v, \xi_s)$. Proof

$$(x',\phi')$$
, such that $\phi' \geq Q(x')$, satisfies

$$\phi \geq \sum_{s=1}^{S} \pi_s(\rho_s^v)^\top (h_s - T_s x)$$

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Proof

Summarizing:

- ► We know how to check optimality,
- We know how to cut off (x^{ν}, ϕ^{ν}) such that $\phi^{\nu} < Q(x^{\nu})$,
- We know that optimality cuts preserve $(x^{\prime}, \phi^{\prime})$ such that $\phi^{\prime} \geq Q(x^{\prime})$.

Table of Contents

Overview

Feasibility

Optimality

The algorithm

Dealing with integers

Some Proofs

1. Solve MP (initially no cuts) to find (x^{ν}, ϕ^{ν})

- 1. Solve MP (initially no cuts) to find (x^{ν}, ϕ^{ν})
- 2. For $s = 1, \ldots, S$ solve $F^D(x^v, \xi_s)$

- 1. Solve MP (initially no cuts) to find (x^{ν}, ϕ^{ν})
- 2. For $s = 1, \ldots, S$ solve $F^D(x^v, \xi_s)$
- If F^D(x^ν, ξ_s) > 0 for some s, add a feasibility cut and return to STEP 1.

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

- 1. Solve MP (initially no cuts) to find (x^{ν}, ϕ^{ν})
- 2. For $s = 1, \ldots, S$ solve $F^D(x^v, \xi_s)$
- If F^D(x^v, ξ_s) > 0 for some s, add a feasibility cut and return to STEP 1.

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

4. For s = 1, ..., S solve $Q^D(x^v, \xi_s)$ and calculate $Q(x^v)$

- 1. Solve MP (initially no cuts) to find (x^{ν}, ϕ^{ν})
- 2. For $s = 1, \ldots, S$ solve $F^D(x^v, \xi_s)$
- 3. If $F^{D}(x^{v}, \xi_{s}) > 0$ for some *s*, add a feasibility cut and return to STEP 1.
- 4. For s = 1, ..., S solve $Q^D(x^v, \xi_s)$ and calculate $Q(x^v)$
- 5. If $\phi^{\nu} \ge Q(x^{\nu})$, STOP (x^{ν}, ϕ^{ν}) is optimal otherwise add an optimality cut and return to STEP 1.

- コント 4 日 > ト 4 日 > ト 4 日 > - シックク

A finite algorithm

The algorithm converges

- ► finitely many possible cuts
- if (at most) all cuts are available, the solution to MP is optimal.

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

Bounds

$c^{\top}x^{\nu} + \phi^{\nu} \le z^* \le c^{\top}x^{\nu} + Q(x^{\nu})$

Table of Contents

Overview

Feasibility

Optimality

The algorithm

Dealing with integers

Some Proofs

Dealing with integers

Integer variables in the first stage

VS

Integer variables in the second stage

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dealing with integers

Integer variables in the first stage:

Embed the L-Shaped Method into Branch and Bound.

Let $L \leq Q(x) \quad \forall x$

Let $L \leq Q(x) \quad \forall x$

Let x^{v} integer solution at node v

Let $L \leq Q(x) \quad \forall x$

Let x^{v} integer solution at node v

Let \mathcal{I}_{v} the indices for which $x^{v} = 1$

Dealing with integers

Integer variables in the second stage (and binary first stage):

$$\phi \geq (\mathcal{Q}(x^{\nu}) - \mathcal{L})|\sum_{i \in \mathcal{I}_{\nu}} x_i - \sum_{i \notin \mathcal{I}_{\nu}} x_i| - (\mathcal{Q}(x^{\nu}) - \mathcal{L})(|\mathcal{I}_{\nu}| - 1) + \mathcal{L}$$

How does it work?

$$\begin{aligned} x &= x^{v} \implies \phi \geq Q(x^{v}) \\ x &\neq x^{v} \implies \phi \geq L^{v} \leq L \end{aligned}$$

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

The bound can be improved by looking in the neighborhood of x^{ν} .

Classical (duality based) L-Shaped cuts on the LP relaxation help a lot!

Exercise (approx. 50 min)

https://tinyurl.com/sptutorial3

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

Table of Contents

Overview

Feasibility

Optimality

The algorithm

Dealing with integers

Some Proofs

If $F^D(x^v, \xi_s) > 0$ for some *s*, let σ_s^v be its optimal solution. The feasibility cut

$$(\sigma_s^v)^{ op}(h_s - T_s x) \leq 0$$

cuts off the second-stage-infeasible solution $x^{\nu} \notin \mathcal{K}_2$.

Proof. Assume $x^{\nu} \notin \mathcal{K}_2 \to \exists s$ with $F^D(x^{\nu}, \xi_s) = F^P(x^{\nu}, \xi_s) > 0$ $F^D(x^{\nu}, \xi_s) = (\sigma_s^{\nu})^{\top}(h_s - T_s x^{\nu}) > 0$ σ_s^{ν} optimal to $F^D(x^{\nu}, \xi_s) \to x^{\nu}$ does not satisfy

$$(\sigma_s^v)^{\top}(h_s - T_s x) \leq 0$$

- コント 4 日 > ト 4 日 > ト 4 日 > - シックク

Back

Solution $x' \in \mathcal{K}_2$ satisfies feasibility cuts

$$(\sigma_s^v)^{ op}(h_s - T_s x) \leq 0$$

Proof. Assume $x' \in \mathcal{K}_2$, then

$$F^{D}(x',\xi_{s}) = F^{P}(x',\xi_{s}) = 0 \qquad s = 1,\ldots,S$$

Solution σ_s^v to $F^D(x^v, \xi_s)$ is feasible for problem $F^D(x^l, \xi_s)$ but not optimal.

$$0 = F^D(x^{\prime}, \xi_s) = (\sigma_s^{\prime})^{\top}(h_s - T_s x^{\prime}) \ge (\sigma_s^{\nu})^{\top}(h_s - T_s x^{\prime})$$

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

. Thus $x^{\prime} \in \mathcal{K}_2$ does not violate the feasibility cut.

Back

Proof optimality cuts.

Proof.

Assume $\phi^{\nu} < Q(x^{\nu})$. Then we have

$$\phi^{\mathsf{v}} < Q(x^{\mathsf{v}}) = \sum_{s=1}^{\mathsf{S}} \pi_s Q^D(x^{\mathsf{v}},\xi_s) = \sum_{s=1}^{\mathsf{S}} \pi_s(\rho_s^{\mathsf{v}})^\top (h_s - T_s x^{\mathsf{v}})$$

 ρ_s^{ν} optimal for $Q(x^{\nu},\xi_s)$. Constraint

$$\phi \geq \sum_{s=1}^{S} \pi_s(\rho_s^v)^\top (h_s - T_s x)$$

is not satisfied by (x^{ν}, ϕ^{ν}) .

Back

Proof. Assume $\phi^{\prime} \geq Q(x^{\prime})$

$$\phi' \ge Q(x') = \sum_{s=1}^{S} \pi_s Q^D(x', \xi_s) = \sum_{s=1}^{S} \pi_s (\rho_s')^\top (h_s - T_s x')$$
$$\sum_{s=1}^{S} \pi_s (\rho_s')^\top (h_s - T_s x') \ge \sum_{s=1}^{S} \pi_s (\rho_s^v)^\top (h_s - T_s x')$$

 $\rho_s^{\rm v}$ is feasible for $Q^D(x^{\prime},\xi_s)$ while ρ_s^{\prime} is optimal. Thus

$$\phi' \geq \sum_{s=1}^{S} \pi_s(\rho_s^v)^\top (h_s - T_s x')$$