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At the end of this tutorial you will know

How to formulate general stochastic programs

:two-stage linear
(mixed-integer) recourse problems for a risk neutral decision maker

What makes them difficult and how to address the difficulty

How to solve them



At the end of this tutorial you will know

How to formulate general stochastic programs

:two-stage linear
(mixed-integer) recourse problems for a risk neutral decision maker

What makes them difficult

and how to address the difficulty

How to solve them



At the end of this tutorial you will know

How to formulate general stochastic programs

:two-stage linear
(mixed-integer) recourse problems for a risk neutral decision maker

What makes them difficult

and how to address the difficulty

How to solve them



At the end of this tutorial you will know

How to formulate general stochastic programs:two-stage linear
(mixed-integer) recourse problems

for a risk neutral decision maker

What makes them difficult

and how to address the difficulty

How to solve them



At the end of this tutorial you will know

How to formulate general stochastic programs:two-stage linear
(mixed-integer) recourse problems for a risk neutral decision maker

What makes them difficult

and how to address the difficulty

How to solve them



At the end of this tutorial you will know

How to formulate general stochastic programs:two-stage linear
(mixed-integer) recourse problems for a risk neutral decision maker

What makes them difficult and how to address the difficulty

How to solve them



At the end of this tutorial you will know

How to formulate general stochastic programs:two-stage linear
(mixed-integer) recourse problems for a risk neutral decision maker

What makes them difficult and how to address the difficulty

How to solve (approximations of) two-stage stochastic programs



Limitations ...

▶ Risk-aversion

▶ Chance constraints

▶ Stochastic dominance

▶ Multi-stage problems

▶ Endogenous uncertainty

▶ Robust/Distributionally robust

▶ ...



Plan

▶ Introduction (45 min)

▶ break (15 min)

▶ Exercise 1 (10 min)

▶ More info on approximations (15 min)

▶ Exercise 2 (30 min)

▶ break (10 min)

▶ L-Shaped method (45 min)

▶ Exercise 3 (50 min)
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Uncertainty

Something is uncertain
(Ω,F ,P)

ω ∈ Ω → ξ(ω) ∈ Ξ
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Decision stages

Stage

ξ1
↓

1

x1

ω2 →
ξ2(ω2)

↓

2

x2(ω2)

ω3 →
ξ3(ω3)

↓

3

x3(ω3)

ω4 →
ξ4(ω4)

↓

4

x4(ω4)



Two-Stage Stochastic Programs with Recourse

The decision maker:

1. Makes decisions x ∈ X ⊆ Rn1 (first decision stage)

2. Waits for the outcome ω ∈ Ω of some random experiment.

3. ω determines ξ(ω) (our random data)

4. Makes decisions y(ω) ∈ Y ⊆ Rn2 , given ξ and x (second
decision stage)
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Two-Stage Stochastic Programs with Recourse

min z =c⊤ x + Eξ[minq(ω)T y(ω)]
s.t. Ax = b

T (ω)x + W (ω)y(ω) = h(ω) a.s.

x ∈ X , y(ω) ∈ Y



Two-Stage Stochastic Programs with Recourse

Parameters c ∈ Rn1 , b ∈ Rm1 , and A ∈ Rn1×m1 are known.

Parameters q(ω) ∈ Rn2 , h(ω) ∈ Rm2 , W (ω) ∈ Rm2×n2 and
T (ω) ∈ Rm2×n1 are uncertain.

ξ(ω) =
(
q(ω)⊤,h(ω)⊤, W 1(ω),. . .,W (ω)m2 ,T (ω)1,. . .,T (ω)m2

)
.

ξ is a realization of ξ(ω).
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Two-Stage Stochastic Programs with Recourse

min c⊤x + Q(x)

s.t. Ax = b

x ∈ X

where
Q(x) = Eξ[Q(x , ξ)]

Q(x , ξ) = min
y
{q⊤y |Wy = h − Tx , y ∈ Y}.
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Two-Stage Stochastic Programs with Recourse with
Discrete ξ

Consider Ξ = {ξ1, . . . , ξS} with probabilities πs , s = 1 . . . ,S .

ξs =⇒ qs ,Ts ,Ws , hs .

y(ω) becomes y1, . . . , yS .
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Two-Stage Stochastic Programs with Recourse with
Discrete ξ

Consider Ξ = {ξ1, . . . , ξS} with probabilities πs , s = 1 . . . ,S .

ξs =⇒ qs ,Ts ,Ws , hs .

y(ω) becomes y1, . . . , yS .



Two-Stage Stochastic Programs with Recourse with
Discrete ξ

min c⊤x +
S∑

s=1

πsq
T
s ys

s.t. Ax = b

Tsx +Wsys = hs s = 1, . . . ,S

x ∈ X
ys ∈ Y s = 1, . . . ,S .
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A closer look at ξ

Where do we get ξ?

▶ Number of failures ≈ Weibull

▶ Wind speed ≈ Weibull,Rayleigh

▶ Forecast error (linear regression) ≈ Normal

▶ Hospitalization in certain epidemics ≈ LogNormal

▶ Repair times ≈ LogNormal

▶ Choice model ≈ Gumbel, Normal, EV Type I

▶ Waiting times ≈ Beta

▶ ...
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A closer look at ξ

Some randomness is discrete

▶ Number of occurrences ≈ Poisson

▶ Number of trials before success ≈ Geometric

▶ Number of successes ≈ HyperGeometric

▶ ...
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A closer look at ξ

High dimensions and co-dependencies are problematic
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If ξ is continuous...

Constraints must hold a.s. ...

Possibly ∞ constraints
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A closer look at Q(x)

The recourse function ...

Q(x) = Eξ

[
Q(x , ξ)

]
=

∫
Ω
Q(x , ξ(ω))P(dω)

Why is this difficult?

Ingredient 1: a closed form expression Q(x , ξ)

Ingredient 2: an antiderivative

Observe: Q(x) =
∫ ∫

· · ·
∫
Q(x , ξ)D(ξ)dξ1dξ2 · · · dξN
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A closer look at Q(x)

The recourse function ...

Q(x) = Eξ

[
Q(x , ξ)

]
=

∫
Ω
Q(x , ξ(ω))P(dω)

Idea! Numerical integration!



A closer look at Q(x)

In one dimension (i.e., N = 1): Riemann sums, Trapezoidal rule,
Simpson’s rule

Ex. Riemann Sums ∫ b

a
f (x)dx

▶ Partition [a, b] using K points x0 = a, x1,. . .,xK = b equally
spaced ∆x

▶
∫ b
a f (x)dx ≈

∑
k f (xk)∆x

▶ As K increases we improve the approximation.



A closer look at Q(x)

In multiple dimensions: Quadrature methods.

Same principle, harder partition

−1 1 2 3 4 5

−1

1

2

3

4

5

6

ξ1

ξ2



A closer look at Q(x)

Numerical integration: it is already an approximation

all this work for one x ...

we still have to solve the stochastic program..
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A closer look at Q(x)

When ξ is discrete...

Q(x) =
S∑

s=1

πsQ(x , ξs)

Finitely many linear constraints

When ξ is discrete ... but large ...
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Approximations

Continuous/discrete but large → discrete and small

Three categories of methods (loosely speaking)

▶ Probability Metrics

▶ Property Matching

▶ Monte Carlo
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Method based on Probability Metrics in a nutshell

Results from research on stability, see,e.g.,
[Dup90, Pfl01, RR02, Röm03].

|z(P)− z(Q)| ≤ Ld(P,Q)



Method based on Probability Metrics in a nutshell

▶ Start from large N scenarios (e.g., sampled)

▶ Remove one scenario at a time to minimize the distance
between the new and old distribution

▶ Add the probability of the deleted scenarios to the closest
scenarios (in the sense of the probability metric)

Scenario reduction/generation, see, e.g., [HR03, DGKR03].
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Property Matching in a nutshell

Idea: Replicate only the statistical properties that are important for
the problem [HW01].

Create a small distribution that replicates only those properties.



Property Matching in a nutshell

Not always necessary to increase the size of the distribution.

Problem driven.

Observe: requires an NLP (heuristics exist [HKW03])

Which properties?
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Monte Carlo in a nutshell

Make K identical copies ξ1, . . . , ξK of ξ.

From each take, independently, a realization ξk .

Write the Sample Average Approximation (SAA)

zK = min f (x) :=c⊤ x +
K∑

k=1

1

K
qTk yk

s.t. Ax = b,

Tkx +Wkyk = hk , k = 1, . . . ,K

x ∈ X ,

yk ∈ Y, k = 1, . . . ,K .
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Sample Average Approximation (SAA)

zK = min f K (x) :=c⊤ x +
K∑

k=1

1

K
qTk yk

s.t. Ax = b,

Tkx +Wkyk = hk , k = 1, . . . ,K

x ∈ X ,

yk ∈ Y, k = 1, . . . ,K .

or

zK = min f K (x) :=c⊤ x +
K∑

k=1

1

K
Q(x , ξk)

s.t. Ax = b,

x ∈ X



SAA: some observations

zK is a stochastic estimator of z∗



SAA: some observations

f K (x̄) = c⊤ x̄ +
K∑

k=1

1

K
Q(x̄ , ξk)

is an unbiased estimator (pointwise x = x̄) of

f (x̄) = c⊤ x̄ + Eξ[Q(x̄ , ξ)]



SAA: some observations

Finally, f K (x̄) a consistent estimator of f (x̄), that is

lim
K→∞

1

K

K∑
k=1

Q(x̄ , ξk) → Eξ [Q(x̄ , ξ)] = Q(x̄)

We say that f K (x̄) converges pointwise.

But observe

Std [
1

K

K∑
k=1

Q(x̄ , ξk)] =
Std [Q(x̄ , ξ)]√

K
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SAA: some observations

Exercise 1: 15 minutes

https://tinyurl.com/sptutorial1

https://tinyurl.com/sptutorial1


SAA: some observations

Under certain conditions zK → z∗ as k → ∞ (exponentially fast!)

E[zK ] gives a statistical lower bound! (obs! zK is biased)

Proof

E
[
c⊤x̄ + 1

K

∑K
k=1[Q(x̄ , ξk)]

]
gives a statistical upper bound!

See, e.g., [Sha91, MMW99, Sha03].
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Proof

E
[
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K
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See, e.g., [Sha91, MMW99, Sha03].



SAA: some observations

Exercise 2: 30 minutes

https://tinyurl.com/sptutorial2

https://tinyurl.com/sptutorial2


Approximations

Getting a good solution vs Estimating its value
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Mathematical properties of discrete stochastic programs

K2(ξ) = {x |∃y ≥ 0, s.t.W (ω)y = h(ω)− T (ω)x}

Convex and polyhedral!
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Mathematical properties of discrete stochastic programs

Useful jargon
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Mathematical properties of discrete stochastic programs

Q(x , ξ) is:

a. piece-wise linear convex in h, T and x ,

b. piece-wise linear concave in q.



Mathematical properties of discrete stochastic programs

Q(x) = EξQ(x , ξ) =
S∑

s=1

πsQ(x , ξs)

piece-wise linear convex in x .



Proof of lower bound

The expectation of the optimal objective value of SAAs of size K
is a lower bound for the true optimal objective value, that is:

E[zK ] ≤ z∗

Proof.
First, observe that

z∗ = minx∈K1 f (x) = minx∈K1 c
⊤x + E

[
K−1

∑K
k=1Q(x , ξk)

]
. We

can use a direct proof. We know that for all x ′ ∈ K1

min
x∈K1

K−1
K∑

k=1

c⊤x + Q(x , ξk) ≤ K−1
K∑

k=1

c⊤x ′ + Q(x ′, ξk)

by taking the expectation of both sides we obtain continues...



Proof of lower bound

The expectation of the optimal objective value of SAAs of size K
is a lower bound for the true optimal objective value, that is:

E[zK ] ≤ z∗

Proof.
continuing...

E

[
min
x∈K1

K−1
K∑

k=1

c⊤x + Q(x , ξk)

]
≤ E

[
K−1

K∑
k=1

c⊤x ′ + Q(x ′, ξk)

]

which corresponds to

E
[
zK

]
≤ E

[
K−1

K∑
k=1

c⊤x ′ + Q(x ′, ξk)

]

continues...



Proof of lower bound

The expectation of the optimal objective value of SAAs of size K
is a lower bound for the true optimal objective value, that is:

E[zK ] ≤ z∗

Proof.
continuing... Now, since the inequality holds for all x ′, it holds also
for the solution x ′ that minimizes expectation on the
right-hand-side and which yields z∗, that is

E
[
zK

]
≤ min

x ′∈K1

E

[
K−1

K∑
k=1

c⊤x ′ + Q(x ′, ξk)

]
= z∗
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