
Stochastic Programming
Solution Methods

Giovanni Pantuso

Department of Mathematical Sciences
University of Copenhagen
Copenhagen, Denmark

Table of Contents

L-Shaped Method
Feasibility
Optimality
The algorithm
Dealing with integers

Dual Decomposition
Lagrangian Relaxation
Mind the gap!
Solving the Dual
Branch and Bound

Some Proofs
Proofs L-Shaped Method
Proofs Dual Decomposition

Applicability

Two-stage linear stochastic programs with recourse where

▶ ξ is a discrete random variable,

▶ X = Rn1
+ ,

▶ Y = Rn2
+ .

The integer case requires some adjustments.

Recall

The deterministic equivalent problem

min z = cT x + Q(x)

s.t.Ax = b

x ≥ 0

where

Q(x) =
S∑

s=1

πsQ(x , ξs)

and
Q(x , ξs) = min

y
{qTs y |Wsy = hs − Tsx , y ≥ 0}.

Recall

We call K1 = {x |Ax = b, x ≥ 0} When Y = Rn2
+ and ξ is discrete:

▶ Q(x) is piecewise linear and convex in x

▶ K2 is a closed and convex polyhedron

This will help..

A reformulation of the DEP

min z = cT x + Q(x)

s.t.x ∈ K1 ∩ K2

A reformulation of the DEP

If we introduce a variable ϕ we can obtain another reformulation

min z = cT x + ϕ

s.t.x ∈ K1

x ∈ K2

ϕ ≥ Q(x)

A reformulation of the DEP

A reformulation of the DEP

Polyhedral formulation, but with way too many constraints..

Idea! Drop x ∈ K2 and ϕ ≥ Q(x) and reconstruct them
iteratively... (We may not need all of their constraints).

The Master Problem

At a generic iteration..

min z = cT x + ϕ

s.t.x ∈ K1

fi (x) ≤ 0 i = 1, . . . , I ,

gj(x , ϕ) ≤ 0 j = 1, . . . , J

The Master Problem

At a generic iteration..

min z = cT x + ϕ

s.t.x ∈ K1

fi (x) ≤ 0 i = 1, . . . , I ,

gj(x , ϕ) ≤ 0 j = 1, . . . , J

Initially I = J = 0.

Feasibility

At iteration v we solve MP and find (xv , ϕv).

Does xv ∈ K2? Let’s check:

For each s we solve the feasibility subproblem.

Feasibility

FP(xv , ξs) = min
y ,v+,v−

e⊤v++e⊤v−

s.t.Wsy+Iv+−Iv− = hs − Tsx
v ,

y , v+, v− ≥ 0

where e⊤ = (1, . . . , 1) and I is the identity matrix.

Find the differences:

Q(x , ξs) = min
y
{qTs y |Wsy = hs − Tsx , y ≥ 0}.

Feasibility

FP(xv , ξs) = min
y ,v+,v−

{e⊤v++e⊤v−|Wsy+Iv+−Iv− = hs−Tsx
v , y , v+, v− ≥ 0}

Its dual

FD(xv , ξs) = max
σ

{σ⊤(hs − Tsx
v)|σ⊤Ws ≤ 0, σ⊤I ≤ e⊤,−σ⊤I ≤ e⊤}

Both are always feasible. Strong duality FD(xv , ξs) = FP(xv , ξs).

Feasibility

If FP(xv , ξs) = FD(xv , ξs) = 0 for all s then xv ∈ K2 otherwise it
does not.

If xv /∈ K2 we need to tell MP that xv is not a good solution and
must be cut off.

Feasibility

If FD(xv , ξs) > 0 for some s, let σv
s be its optimal solution. The

feasibility cut
(σv

s)
⊤(hs − Tsx) ≤ 0

cuts off the second-stage-infeasible solution xv /∈ K2.

Proof

Feasibility

Adding
(σv

s)
⊤(hs − Tsx) ≤ 0

to MP will cut off solution xv at the next iteration.

Feasibility

Solution x l ∈ K2 satisfies feasibility cuts

(σv
s)

⊤(hs − Tsx) ≤ 0

Proof

Feasibility

Summary:

▶ we know how verify xv ∈ K2,

▶ we know that (σv
s)

⊤(hs − Tsx) ≤ 0 will cut off infeasible
solutions,

▶ we know that (σv
s)

⊤(hs − Tsx) ≤ 0 will not cut off feasible
solutions.

Optimality

Assume (xv , ϕv) is now such that

xv ∈ K2

. We should now verify whether

ϕv ≥ Q(xv)

. We need to calculate

Q(xv) =
S∑

s=1

πsQ(xv , ξs)

Optimality

For s = 1, . . . ,S solve

QP(xv , ξs) = min
y
{q⊤s y |Wsy = hs − Tsx

v , y ≥ 0}

or its dual

QD(xv , ξs) = max
ρ

{ρ⊤(hs − Tsx
v)|ρ⊤Ws ≤ q⊤s }

Optimality

Observe:

▶ QP(xv , ξs) is feasible (and, we assume, bounded)

▶ QP(xv , ξs) = QD(xv , ξs),

▶ Q(xv) =
∑S

s=1 πsQ
P(xv , ξs) =

∑S
s=1 πsQ

D(xv , ξs).

Optimality

If ϕv < Q(xv), then (xv , ϕv) is cut off by optimality cut

ϕ ≥
S∑

s=1

πs(ρ
v
s)

⊤(hs − Tsx)

where ρvs is the optimal solution to QD(xv , ξs). Proof

Optimality

(x l , ϕl), such that ϕl ≥ Q(x l), satisfies

ϕ ≥
S∑

s=1

πs(ρ
v
s)

⊤(hs − Tsx)

Proof

Optimality

Summarizing:

▶ We know how to check optimality,

▶ We know how to cut off (xv , ϕv) such that ϕv < Q(xv),

▶ We know that optimality cuts preserve (x l , ϕl) such that
ϕl ≥ Q(x l).

Putting everything together

1. Solve MP (initially no cuts) to find (xv , ϕv)

2. For s = 1, . . . ,S solve FD(xv , ξs)

3. If FD(xv , ξs) > 0 for some s, add a feasibility cut and return
to STEP 1.

4. For s = 1, . . . ,S solve QD(xv , ξs) and calculate Q(xv)

5. If ϕv ≥ Q(xv), STOP (xv , ϕv) is optimal otherwise add an
optimality cut and return to STEP 1.

Putting everything together

1. Solve MP (initially no cuts) to find (xv , ϕv)

2. For s = 1, . . . ,S solve FD(xv , ξs)

3. If FD(xv , ξs) > 0 for some s, add a feasibility cut and return
to STEP 1.

4. For s = 1, . . . ,S solve QD(xv , ξs) and calculate Q(xv)

5. If ϕv ≥ Q(xv), STOP (xv , ϕv) is optimal otherwise add an
optimality cut and return to STEP 1.

Putting everything together

1. Solve MP (initially no cuts) to find (xv , ϕv)

2. For s = 1, . . . ,S solve FD(xv , ξs)

3. If FD(xv , ξs) > 0 for some s, add a feasibility cut and return
to STEP 1.

4. For s = 1, . . . ,S solve QD(xv , ξs) and calculate Q(xv)

5. If ϕv ≥ Q(xv), STOP (xv , ϕv) is optimal otherwise add an
optimality cut and return to STEP 1.

Putting everything together

1. Solve MP (initially no cuts) to find (xv , ϕv)

2. For s = 1, . . . ,S solve FD(xv , ξs)

3. If FD(xv , ξs) > 0 for some s, add a feasibility cut and return
to STEP 1.

4. For s = 1, . . . ,S solve QD(xv , ξs) and calculate Q(xv)

5. If ϕv ≥ Q(xv), STOP (xv , ϕv) is optimal otherwise add an
optimality cut and return to STEP 1.

Putting everything together

1. Solve MP (initially no cuts) to find (xv , ϕv)

2. For s = 1, . . . ,S solve FD(xv , ξs)

3. If FD(xv , ξs) > 0 for some s, add a feasibility cut and return
to STEP 1.

4. For s = 1, . . . ,S solve QD(xv , ξs) and calculate Q(xv)

5. If ϕv ≥ Q(xv), STOP (xv , ϕv) is optimal otherwise add an
optimality cut and return to STEP 1.

A finite algorithm

The algorithm converges

▶ finitely many possible cuts

▶ if (at most) all cuts are available, the solution to MP is
optimal.

Bounds

c⊤xv + ϕv ≤ z∗ ≤ c⊤xv + Q(xv)

Dealing with integers

Integer variables in the first stage

VS

Integer variables in the second stage

Dealing with integers

Integer variables in the first stage:

Embed the L-Shaped Method into Branch and Bound.

Dealing with integers

Integer variables in the second stage (and binary first stage):

Let L ≤ Q(x)∀x

Let xv integer solution at node v

Let Iv indices for which xv = 1

Dealing with integers

Integer variables in the second stage (and binary first stage):

Let L ≤ Q(x)∀x

Let xv integer solution at node v

Let Iv indices for which xv = 1

Dealing with integers

Integer variables in the second stage (and binary first stage):

Let L ≤ Q(x)∀x

Let xv integer solution at node v

Let Iv indices for which xv = 1

Dealing with integers

Integer variables in the second stage (and binary first stage):

ϕ ≥ (Q(xv)− L)|
∑
i∈Iv

xi −
∑
i /∈Iv

xi | − (Q(xv)− L)(|Iv | − 1) + L

Dealing with integers

Integer variables in the second stage (and binary first stage):

How does it work?

x = xv =⇒ ϕ ≥ Q(xv)

x ̸= xv =⇒ ϕ ≥ Lv ≤ L

Dealing with integers

Integer variables in the second stage (and binary first stage):

The bound can be improved by looking in the neighborhood of xv .

Classical (duality based) L-Shaped cuts on the LP relaxation help a
lot!

Table of Contents

L-Shaped Method
Feasibility
Optimality
The algorithm
Dealing with integers

Dual Decomposition
Lagrangian Relaxation
Mind the gap!
Solving the Dual
Branch and Bound

Some Proofs
Proofs L-Shaped Method
Proofs Dual Decomposition

Applicability

Multistage stochastic programs (possibly integer at all stages)

▶ ξ is a discrete random variable (assume not too large)

▶ Xt may contain integrality restrictions on all/some decision
variables.

Applicability

Multistage stochastic programs (possibly integer at all stages)

▶ ξ is a discrete random variable (assume not too large)

▶ Xt may contain integrality restrictions on all/some decision
variables.

In a nutshell

1

2 3

4 5 6 7

t

1

2

3

1 2 3 4

π1 π2 π3 π4

x1

x2 x3

x4 x5 x6 x7

Figure 1

In a nutshell

1

2

4

1

2

5

1

3

6

1

3

7

t

1

2

3

1 2 3 4

π1 π2 π3 π4

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

In a nutshell

▶ Use a scenario formulation

▶ Relax NACs (Lagrangian Relaxation)

▶ Use the Lagrangian bound in a Branch and Bound framework

▶ Branch until NACs are reconstructed

In a nutshell

▶ Use a scenario formulation

▶ Relax NACs (Lagrangian Relaxation)

▶ Use the Lagrangian bound in a Branch and Bound framework

▶ Branch until NACs are reconstructed

In a nutshell

▶ Use a scenario formulation

▶ Relax NACs (Lagrangian Relaxation)

▶ Use the Lagrangian bound in a Branch and Bound framework

▶ Branch until NACs are reconstructed

In a nutshell

▶ Use a scenario formulation

▶ Relax NACs (Lagrangian Relaxation)

▶ Use the Lagrangian bound in a Branch and Bound framework

▶ Branch until NACs are reconstructed

Reformulation

Assume a two-stage SP

Ss = {(x , ys) : x ∈ K1, x ∈ X ,Tsx +Wsys = hs , ys ∈ Y}

We can write the two-stage stochastic program as follows

z∗ = min
{
c⊤x +

S∑
s=1

πsq
⊤
s ys : (x , ys) ∈ Ss , s = 1, . . . ,S

}

Reformulation

z∗ = min
{
c⊤x +

S∑
s=1

πsq
⊤
s ys : (x , ys) ∈ Ss , s = 1, . . . ,S

}

z∗ = min

{
S∑

s=1

πs
(
c⊤xs + q⊤s ys

)∣∣∣∣∣ (xs , ys) ∈ Ss , s = 1, . . . ,S
x1 = x2 = · · · = xS−1 = xS

}

x1 = x2 = · · · = xS−1 = xS =⇒
S∑

s=1

Hsxs = 0

Reformulation

z∗ = min
{
c⊤x +

S∑
s=1

πsq
⊤
s ys : (x , ys) ∈ Ss , s = 1, . . . ,S

}

z∗ = min

{
S∑

s=1

πs
(
c⊤xs + q⊤s ys

)∣∣∣∣∣ (xs , ys) ∈ Ss , s = 1, . . . ,S
x1 = x2 = · · · = xS−1 = xS

}

x1 = x2 = · · · = xS−1 = xS =⇒
S∑

s=1

Hsxs = 0

Lagrangian Relaxation

z∗ = min

{
S∑

s=1

πs
(
c⊤xs + q⊤s ys

)∣∣∣∣∣ (xs , ys) ∈ Ss , s = 1, . . . ,S∑S
s=1Hsxs = 0

}

For given λ

D(λ) = min
x,y

{ s∑
s=1

[
πs

(
c⊤xs + q⊤

s ys
)
+ λHsxs

]
: (xs , ys) ∈ Ss , s = 1, . . . , S

}

Lagrangian Relaxation

z∗ = min

{
S∑

s=1

πs
(
c⊤xs + q⊤s ys

)∣∣∣∣∣ (xs , ys) ∈ Ss , s = 1, . . . ,S∑S
s=1Hsxs = 0

}

For given λ

D(λ) = min
x,y

{ s∑
s=1

[
πs

(
c⊤xs + q⊤

s ys
)
+ λHsxs

]
: (xs , ys) ∈ Ss , s = 1, . . . , S

}

Lagrangian Relaxation

For all λ,
D(λ) ≤ z∗

Proof

The Lagrangian Dual

zLD = max
λ

D(λ)

zLD ≤ z∗

The Lagrangian Dual

zLD = max
λ

D(λ)

zLD ≤ z∗

We can close the gap!

If for some choice of λ the solution (xs , ys)
S
s=1 to D(λ) is feasible

for the stochastic program, then

▶ (xs , ys)
S
s=1 is an optimal solution to the stochastic program,

▶ λ is an optimal solution to the Lagrangian dual.

Proof

We can close the gap!

If for some choice of λ the solution (xs , ys)
S
s=1 to D(λ) is feasible

for the stochastic program, then

▶ (xs , ys)
S
s=1 is an optimal solution to the stochastic program,

▶ λ is an optimal solution to the Lagrangian dual.

Proof

We can close the gap!

If for some choice of λ the solution (xs , ys)
S
s=1 to D(λ) is feasible

for the stochastic program, then

▶ (xs , ys)
S
s=1 is an optimal solution to the stochastic program,

▶ λ is an optimal solution to the Lagrangian dual.

Proof

Usually, we are not so lucky

However,

zLD = min

{
S∑

s=1

πs
(
c⊤xs + q⊤s ys

)∣∣∣∣∣ (xs , ys) ∈ convSs , s = 1, . . . ,S
x1 = · · · = xS

}
Proof

But usually we do not close the gap...

2 4 6

2

4

6

But usually we do not close the gap..

2 4 6

2

4

6

So what?

The feasible region of

zLD = min

{ S∑
s=1

πs

(
c⊤xs+q⊤

s ys
)
: (xs , ys) ∈ convSs , s = 1, . . . , S , x1 = · · · = xS

}
Contains

z∗ = min

{ S∑
s=1

πs

(
c⊤xs+q⊤

s ys
)
: conv

{
(xs , ys) ∈ Ss , s = 1, . . . , S , x1 = · · · = xS

}}

So what?

S2

S1

So what?

convS2

convS1

{ 𝑥", 𝑦" ∈ 𝑐𝑜𝑛𝑣	𝑆", 𝑠 = 1,2, 𝑥0 = 𝑥1}

So what?

S2

S1

conv{ 𝑥", 𝑦" ∈ 𝑆", 𝑠 = 1,2, 𝑥+ = 𝑥,}

So what?

Nevertheless, the feasible region of

zLD = min

{ S∑
s=1

πs

(
c⊤xs+q⊤

s ys
)
: (xs , ys) ∈ convSs , s = 1, . . . , S , x1 = · · · = xS

}
However it is contained in the feasible region of

zLP = min

{ S∑
s=1

πsc
⊤xs + q⊤

s ys : (xs , ys) ∈ SLP
s , s = 1, . . . , S , x1 = · · · = xS

}

How do we solve the dual?

D(λ) is concave in λ.
Proof

How do we solve the dual?

−4 −3 −2 −1 1 2 3 4

−2

−1

1

2

3

4

5

D(λt)

∇Dt

λt λt+1

χt

∇Dt+1

How do we solve the dual?

D(λ) splits into S independent problems

D(λ) = min
x ,y

{ s∑
s=1

[
πs
(
c⊤xs+q⊤s ys

)
+λHsxs

]
: (xs , ys) ∈ Ss , s = 1, . . . ,S

}
Thus, at every iteration of the sub-gradient method we solve S
smaller problems.

A Branch and Bound algorithm

So far it is clear that:

▶ In general we observe a duality gap (zLD < z∗)

▶ The duality gap emerges because NACs are violated

▶ zLD ≥ zLP

Idea: use Branch and Bound to fix NACs!

A Branch and Bound algorithm

STEP 1 Set z̄ = +∞ and P contains only the original
stochastic program.

STEP 2 If P = ∅ STOP, solution (x̄ , ȳ), which yielded
z̄ = c⊤x̄ + Q(x̄) is optimal.

STEP 3 Select and delete a node P from P and solve its
Lagrangian dual whose optimal objective yields
zLD(P). If P is infeasible go to STEP 2.

A Branch and Bound algorithm

STEP 1 Set z̄ = +∞ and P contains only the original
stochastic program.

STEP 2 If P = ∅ STOP, solution (x̄ , ȳ), which yielded
z̄ = c⊤x̄ + Q(x̄) is optimal.

STEP 3 Select and delete a node P from P and solve its
Lagrangian dual whose optimal objective yields
zLD(P). If P is infeasible go to STEP 2.

A Branch and Bound algorithm

STEP 1 Set z̄ = +∞ and P contains only the original
stochastic program.

STEP 2 If P = ∅ STOP, solution (x̄ , ȳ), which yielded
z̄ = c⊤x̄ + Q(x̄) is optimal.

STEP 3 Select and delete a node P from P and solve its
Lagrangian dual whose optimal objective yields
zLD(P). If P is infeasible go to STEP 2.

A Branch and Bound algorithm

STEP 4 If zLD(P) ≥ z̄ go to STEP 2. Otherwise, let
(xPs , y

P
s)

S
s=1 be the solution to the dual.

4.A If xP1 = · · · = xPS
Update z̄ if possible
Delete from P all problems P ′ with zLD(P

′) ≥ z̄
Go to STEP 2.

A Branch and Bound algorithm

STEP 4 If zLD(P) ≥ z̄ go to STEP 2. Otherwise, let
(xPs , y

P
s)

S
s=1 be the solution to the dual.

4.A If xP1 = · · · = xPS
Update z̄ if possible
Delete from P all problems P ′ with zLD(P

′) ≥ z̄
Go to STEP 2.

A Branch and Bound algorithm

STEP 4 If zLD(P) ≥ z̄ go to STEP 2. Otherwise, let
(xPs , y

P
s)

S
s=1 be the solution to the dual.

4.B If the xPs solutions are different:
Compute their average x̂P =

∑S
s=1 πsx

P
s

A Branch and Bound algorithm

STEP 4 If zLD(P) ≥ z̄ go to STEP 2. Otherwise, let
(xPs , y

P
s)

S
s=1 be the solution to the dual.

4.B If the xPs solutions are different:
Compute their average x̂P =

∑S
s=1 πsx

P
s

A Branch and Bound algorithm

STEP 5 Select a component x i of x and add two new
problems to P, that is P ∪ {x is ≤ ⌊x̂Pi ⌋} and
P ∪ {x is ≥ ⌊x̂Pi ⌋+ 1}.

Table of Contents

L-Shaped Method
Feasibility
Optimality
The algorithm
Dealing with integers

Dual Decomposition
Lagrangian Relaxation
Mind the gap!
Solving the Dual
Branch and Bound

Some Proofs
Proofs L-Shaped Method
Proofs Dual Decomposition

Feasibility

If FD(xv , ξs) > 0 for some s, let σv
s be its optimal solution. The

feasibility cut
(σv

s)
⊤(hs − Tsx) ≤ 0

cuts off the second-stage-infeasible solution xv /∈ K2.

Proof.
Assume xv /∈ K2 → ∃ s with FD(xv , ξs) = FP(xv , ξs) > 0

FD(xv , ξs) = (σv
s)

⊤(hs − Tsx
v) > 0

σv
s optimal to FD(xv , ξs) →xv does not satisfy

(σv
s)

⊤(hs − Tsx) ≤ 0

Back

Feasibility

Solution x l ∈ K2 satisfies feasibility cuts

(σv
s)

⊤(hs − Tsx) ≤ 0

Proof.
Assume x l ∈ K2, then

FD(x l , ξs) = FP(x l , ξs) = 0 s = 1, . . . ,S

Solution σv
s to FD(xv , ξs) is feasible for problem FD(x l , ξs) but

not optimal.

0 = FD(x l , ξs) = (σl
s)

⊤(hs − Tsx
l) ≥ (σv

s)
⊤(hs − Tsx

l)

. Thus x l ∈ K2 does not violate the feasibility cut.

Back

Optimality

Proof optimality cuts.

Proof.
Assume ϕv < Q(xv). Then we have

ϕv < Q(xv) =
S∑

s=1

πsQ
D(xv , ξs) =

S∑
s=1

πs(ρ
v
s)

⊤(hs − Tsx
v)

ρvs optimal for Q(xv , ξs). Constraint

ϕ ≥
S∑

s=1

πs(ρ
v
s)

⊤(hs − Tsx)

is not satisfied by (xv , ϕv).

Back

Optimality

Proof.
Assume ϕl ≥ Q(x l)

ϕl ≥ Q(x l) =
S∑

s=1

πsQ
D(x l , ξs) =

S∑
s=1

πs(ρ
l
s)

⊤(hs − Tsx
l)

S∑
s=1

πs(ρ
l
s)

⊤(hs − Tsx
l) ≥

S∑
s=1

πs(ρ
v
s)

⊤(hs − Tsx
l)

ρvs is feasible for QD(x l , ξs) while ρls is optimal. Thus

ϕl ≥
S∑

s=1

πs(ρ
v
s)

⊤(hs − Tsx
l)

Back

Lagrangian Relaxation

For all λ, D(λ) ≤ z∗

Proof.
Take (x∗s , y

∗
s)

S
s=1 and an arbitrary λ̂. We can write

z∗ =
S∑

s=1

πs
(
c⊤x∗s + q⊤s y

∗
s

)
=

S∑
s=1

πs
(
c⊤x∗s + q⊤s y

∗
s

)
+ λ̂

S∑
s=1

Hsx
∗
s︸ ︷︷ ︸

=0

Continues next slide...

Lagrangian Relaxation

Proof.
Furthermore

S∑
s=1

πs

(
c⊤x∗

s + q⊤
s y∗

s

)
+ λ̂

S∑
s=1

Hsx
∗
s︸ ︷︷ ︸

=0

≥ min
x,y

{ s∑
s=1

πs

(
c⊤xs + q⊤

s ys
)
+ λ̂

S∑
s=1

Hsxs : (xs , ys) ∈ Ss , s = 1, . . . , S

}

= min
x,y

{ s∑
s=1

Ls(xs , ys , λ̂) : (xs , ys) ∈ Ss , s = 1, . . . , S

}
= D(λ̂)

Back

We can close the gap!

Proof.
Take λ̂, solve D(λ̂) and assume (x̂s , ŷs)

S
s=1 is feasible for the SP.

D(λ̂) =
S∑

s=1

πs
(
c⊤x̂s+q⊤s ŷs

)
+λ̂

S∑
s=1

Hs x̂s︸ ︷︷ ︸
=0

=
S∑

s=1

πs
(
c⊤x̂s + q⊤s ŷs

)
︸ ︷︷ ︸
Objective of (x̂s ,ŷs)Ss=1 in SP

Continues next slide ...

We can close the gap!

Proof.
On the other hand

D(λ̂) =
S∑

s=1

πs
(
c⊤x̂s + q⊤s ŷs

)
+ λ̂

S∑
s=1

Hs x̂s︸ ︷︷ ︸
=0

≤ max
λ

D(λ) = zLD

Thus
S∑

s=1

πs
(
c⊤x̂s + q⊤s ŷs

)
︸ ︷︷ ︸
Objective of (x̂s ,ŷs)Ss=1 in SP

≤ zLD

That is, zLD is an upper bound the objective value of (x̂s , ŷs)
S
s=1.

Continues next slide ...

We can close the gap!

Proof.
However, we know that zLD is a lower bound.
Therefore

zLD ≤
S∑

s=1

πs
(
c⊤x̂s + q⊤s ŷs

)
≤ zLD

This holds only if

S∑
s=1

πs
(
c⊤x̂s + q⊤s ŷs

)
= zLD

This, λ̂ is optimal for the dual and (x̂s , ŷs)
S
s=1 is optimal for the

primal.

Back

Proof optimality gap

D(λ) =
S∑

s=1

min
xs ,ys

{
πs

(
c⊤xs + q⊤

s ys
)
+ λHsxs : (xs , ys) ∈ Ss , s = 1, . . . , S

}

=
S∑

s=1

min
xs ,ys

{
πs

(
c⊤xs + q⊤

s ys
)
+ λHsxs : (xs , ys) ∈ convSs , s = 1, . . . , S

}
Continues next slide ...

Proof optimality gap

Therefore we can rewrite the dual as

zLD =max
λ

D(λ)

=max
λ

S∑
s=1

min
xs ,ys

{
πs

(
c⊤xs + q⊤

s ys
)
+ λHsxs : (xs , ys) ∈ convSs , s = 1, . . . , S

}
Continues next slide ...

Proof optimality gap

Therefore we can rewrite the dual as

zLD =max
λ

D(λ)

=max
λ

S∑
s=1

min
xs ,ys

{
πs

(
c⊤xs + q⊤

s ys
)
+ λHsxs : (xs , ys) ∈ convSs , s = 1, . . . , S

}
If convSs = ∅ for some s, zLD = ∞, (SP is infeasible).

Otherwise, assume convSs is bounded for all s and let (xks , y
k
s) for

k ∈ Ks be its extreme points. (Continues next slide ...)

Proof optimality gap

The optimum of each D(λ) is attained at one of its extreme
points...

D(λ) =
S∑

s=1

min
k∈Ks

{
πs
(
c⊤xks + q⊤s y

k
s

)
+ λHsx

k
s

}
and, in turn

zLD =max
λ

S∑
s=1

min
k∈Ks

{
πs
(
c⊤xks + q⊤s y

k
s

)
+ λHsx

k
s

}
Continues next slide ...

Proof optimality gap

The same problem can be rewritten as follows

zLD =max
λ,µ

S∑
s=1

µs

µs ≤ πs
(
c⊤xks + q⊤s y

k
s

)
+ λHsx

k
s k ∈ Ks , s = 1, . . . ,S

by bringing all the decision variables on the left-hand-side ...

zLD =max
λ,µ

S∑
s=1

µs

µs − Hsx
k
s λ ≤ πs

(
c⊤xks + q⊤s y

k
s

)
(αks) k ∈ Ks , s = 1, . . . ,S

Continues next slide ...

Proof optimality gap
Let us now take the dual of

zLD =max
λ,µ

S∑
s=1

µs

µs − Hsx
k
s λ ≤ πs

(
c⊤xks + q⊤s y

k
s

)
(αks) k ∈ Ks , s = 1, . . . ,S

zLD =min
S∑

s=1

∑
k∈Ks

πs
(
c⊤xks + q⊤s y

k
s

)
αks∑

k∈Ks

αks = 1 s = 1, . . . ,S

S∑
s=1

∑
k∈Ks

−Hsx
k
s αks = 0

αks ≥ 0 k ∈ Ks , s = 1, . . . ,S

Continues next slide ...

Proof optimality gap
The dual is selecting points in the convex hulls, provided that the
points selected are non-anticipative, that is

zLD =min
S∑

s=1

∑
k∈Ks

πs
(
c⊤xks + q⊤s y

k
s

)
αks∑

k∈Ks

αks = 1 s = 1, . . . ,S

S∑
s=1

∑
k∈Ks

−Hsx
k
s αks = 0

αks ≥ 0 k ∈ Ks , s = 1, . . . ,S

corresponds to

zLD = min

{ S∑
s=1

πs

(
c⊤xs+q⊤

s ys
)
: (xs , ys) ∈ convSs , s = 1, . . . , S , x1 = · · · = xS

}
This completes the proof Back

Proof concavity

D(λ) is concave in λ.

Proof.
Take λ1 and λ2. You need to show that

αD(λ1) + (1− α)D(λ2) ≤ D
(
αλ1 + (1− α)λ2

)
with α ∈ [0, 1].

Back

	L-Shaped Method
	Feasibility
	Optimality
	The algorithm
	Dealing with integers

	Dual Decomposition
	Lagrangian Relaxation
	Mind the gap!
	Solving the Dual
	Branch and Bound

	Some Proofs
	Proofs L-Shaped Method
	Proofs Dual Decomposition

