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Applicability

Two-stage linear stochastic programs with recourse where
» £ is a discrete random variable,
> X =R™,
— n2
> )V =RP.

The integer case requires some adjustments.



Recall

The deterministic equivalent problem

minz=c'x+ Q(x)

stAx=b
x>0
where
S
Qx) = 3 mQ(x, &)
s=1
and

Qx, &) = myin{q! y|Wsy = hs — Tsx,y > 0}.



Recall

We call K1 = {x|Ax = b,x > 0} When Y = R? and £ is discrete:
» Q(x) is piecewise linear and convex in x
» KCy is a closed and convex polyhedron

This will help..



A reformulation of the DEP

minz = ¢’ x + Q(x)
stx e K1NKs



A reformulation of the DEP

If we introduce a variable ¢ we can obtain another reformulation

minz=c’x+ ¢
s.t.x € Ky
x € Ko
¢ > Q(x)



A reformulation of the DEP



A reformulation of the DEP

Polyhedral formulation, but with way too many constraints..

Idea! Drop x € K2 and ¢ > Q(x) and reconstruct them
iteratively... (We may not need all of their constraints).



The Master Problem

At a generic iteration..

minz=c'x+¢
s.t.x € Ky
fi(x) <0
g(x,9) <0



The Master Problem

At a generic iteration..

minz=c'x+ ¢

st.x € Ky
fi(x) <0 i=1,...
gi(x,¢) <0 Jj=1...

Initially / = J = 0.



Feasibility

At iteration v we solve MP and find (x¥, ¢").
Does xV € Ko7 Let's check:

For each s we solve the feasibility subproblem.



Feasibility

FP(xV,&)= min e'vite v~

.y7V+7V7
st.Wsy+Ivi—IvT = hs — Tex",
y,vi v >0
where e” = (1,...,1) and / is the identity matrix.

Find the differences:

Q(x, &) = myin{quyIWsy = hs — Tex,y > 0}.



Feasibility

FP(xV,&)= min {eTvite v |Woy+Ivt—Iv" = hy—Tx",y,vT,v= >0}
+

y,vr,vo
Its dual

FP(xV,&) =max{o (hs — Tex")|o "W, < 0,01 <e",—c"I<e'}

Both are always feasible. Strong duality FP(x", &) = FP(xY, &).



Feasibility

If FP(xV, &) = FP(x¥,&) = 0 for all s then x¥ € K, otherwise it
does not.

If x¥ ¢ KCo we need to tell MP that x“ is not a good solution and
must be cut off.



Feasibility

If FP(x¥,&s) > 0 for some s, let 0¥ be its optimal solution. The

feasibility cut
(O';/)T(hs - TsX) <0

cuts off the second-stage-infeasible solution x* ¢ K.



Feasibility

Adding
(00)"(hs — Tsx) <0

to MP will cut off solution x¥ at the next iteration.



Feasibility

Solution x' € Ky satisfies feasibility cuts

(0¥)T(hs — Tsx) <0

S



Feasibility

Summary:
» we know how verify x¥ € ICy,

» we know that (o) (hs — Tsx) < 0 will cut off infeasible
solutions,

> we know that (o) (hs — Tsx) < 0 will not cut off feasible
solutions.



Optimality

Assume (x¥, ¢") is now such that
x € K
. We should now verify whether
¢ > Q(x")

. We need to calculate



Optimality

Fors=1,...,5 solve
QP(XV)SS) = myin{q;r)/|Wsy =hs — Tsx",y > 0}
or its dual

QP (xv, &) = mpax{pT(hs — Tex)|p"Ws < g}



Optimality

Observe:
> QF(xY, &) is feasible (and, we assume, bounded)
> QF(xY,&) = QP(x", &),
> Q(x") = Yoy QP (x¥. &) = Mooy QP (X", &).



Optimality

If ¥ < Q(xY), then (x",#") is cut off by optimality cut

¢>Z7rs(ps (hs — Tsx)

where pY is the optimal solution to QP(x",&;). GED



Optimality

(x',¢'), such that ¢/ > Q(x'), satisfies

¢>Z7fs(ﬂs (hs — Tsx)



Optimality

Summarizing:
» We know how to check optimality,
» We know how to cut off (x¥,¢") such that ¢ < Q(x"),

» We know that optimality cuts preserve (x/, ¢') such that
¢! > Q(x").



Putting everything together

1. Solve MP (initially no cuts) to find (x", ¢")
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Putting everything together

1. Solve MP (initially no cuts) to find (x", ¢")
2. Fors=1,...,S solve FP(x",&)

3. If FD(xV,gs) > 0 for some s, add a feasibility cut and return
to STEP 1.



Putting everything together

1. Solve MP (initially no cuts) to find (x", ¢")
2. Fors=1,...,S solve FP(x",&)

3. If FD(xV,gs) > 0 for some s, add a feasibility cut and return
to STEP 1.

4. Fors=1,...,5 solve QP(x",&) and calculate Q(x")



Putting everything together

1. Solve MP (initially no cuts) to find (x", ¢")
2. Fors=1,...,S solve FP(x",&)

3. If FD(xV,gs) > 0 for some s, add a feasibility cut and return
to STEP 1.

4. Fors=1,...,5 solve QP(x",&) and calculate Q(x")

5. If ¥ > Q(xY), STOP (x", ¢") is optimal otherwise add an
optimality cut and return to STEP 1.



A finite algorithm

The algorithm converges
» finitely many possible cuts

» if (at most) all cuts are available, the solution to MP is
optimal.



Bounds

CTXV+¢V SZ* S CTXV+ Q(XV)



Dealing with integers

Integer variables in the first stage
VS

Integer variables in the second stage



Dealing with integers

Integer variables in the first stage:

Embed the L-Shaped Method into Branch and Bound.



Dealing with integers

Integer variables in the second stage (and binary first stage):

Let L < Q(x)Vx



Dealing with integers

Integer variables in the second stage (and binary first stage):
Let L < Q(x)Vx

Let xV integer solution at node v



Dealing with integers

Integer variables in the second stage (and binary first stage):
Let L < Q(x)Vx
Let xV integer solution at node v

Let Z, indices for which xV =1



Dealing with integers

Integer variables in the second stage (and binary first stage):

6= (QU) = L)1 Y xi— D x| —(Q(x") = (T, 1) + L

i€T, i¢T,



Dealing with integers

Integer variables in the second stage (and binary first stage):

How does it work?

x=x" = ¢ > Q(x")

x#x\ = ¢>L"<L



Dealing with integers

Integer variables in the second stage (and binary first stage):
The bound can be improved by looking in the neighborhood of xV.

Classical (duality based) L-Shaped cuts on the LP relaxation help a
lot!
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Applicability

Multistage stochastic programs (possibly integer at all stages)



Applicability

Multistage stochastic programs (possibly integer at all stages)
» £ is a discrete random variable (assume not too large)

» X; may contain integrality restrictions on all/some decision
variables.
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In a nutshell
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In a nutshell

» Use a scenario formulation



In a nutshell
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In a nutshell

» Use a scenario formulation
» Relax NACs (Lagrangian Relaxation)

» Use the Lagrangian bound in a Branch and Bound framework



In a nutshell

» Use a scenario formulation

» Relax NACs (Lagrangian Relaxation)

» Use the Lagrangian bound in a Branch and Bound framework
» Branch until NACs are reconstructed



Reformulation

Assume a two-stage SP
Ss ={(x,¥s) i x € K1,x € X, Tex + Wsys = hs, ys € YV}

We can write the two-stage stochastic program as follows

S
¥ = min{ch—i—Zﬂsquys (%, ¥5) €Ss,5=1,...,5}

s=1



Reformulation

S
zF = min{ch+Z7rsq;rys t(x,ys) € Ss, s = 1,...,5}

s=1

S
z"* = min {Z?TS(CTXS + qs,T)/s)

s=1

(X57Ys)€857 5217"'75 }

X1 =X ="+ =X5_1=Xs



Reformulation

S
zF = min{ch+Z7rsq;rys t(x,ys) € Ss, s = 1,...,5}

s=1

X1 =X ="+ =X5_1=Xs

S
z"* = min {Z?TS(CTXS + qs,T)/s)

s=1

(xs,¥5) €Ss, s=1,...,5 }

S
X{ =Xp =" =X§5_1 = X5 —> ZHSX5:0

s=1



Lagrangian Relaxation

Zle Hixs =0

S
z" = min {Z?TS(CTXS + qg—yS)

s=1

(xs, ¥s) € Ss, s:l,...,S}



Lagrangian Relaxation

Zle Hixs =0

S
z" = min {Z?TS(CTXS + qg—yS)

s=1

For given A

s

J— H T T . p—
D(\) = min { Z [7s(c' Xs 4 qs ys) + AHexs] = (Xs,¥5) € Ssys =1,...

s=1

(xs,¥s) €Ss, s=1,...



Lagrangian Relaxation

For all ),




The Lagrangian Dual

ZIpD = m)z\ax D()\)



The Lagrangian Dual

ZIpD = m)z\ax D()\)

zip<Zz*



We can close the gap!

If for some choice of A the solution (xs,ys)2_; to D()) is feasible
for the stochastic program, then



We can close the gap!

If for some choice of A the solution (xs,ys)2_; to D()) is feasible
for the stochastic program, then

> (xs,ys)f:1 is an optimal solution to the stochastic program,



We can close the gap!

If for some choice of A the solution (xs,ys)2_; to D()) is feasible
for the stochastic program, then

> (xs,ys)f:1 is an optimal solution to the stochastic program,

» ) is an optimal solution to the Lagrangian dual.



Usually, we are not so lucky

However,

zip = min {Z 71's(CTXS + q;rys)

s=1

(xs,¥s) € convSs, s=1,...

X1 =-""=Xs§



But usually we do not close the gap...
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But usually we do not close the gap..




So what?

The feasible region of
zip = min { Zﬂs ¢ xs4q, ys) S(xs,ys) EconvSs,s=1,...,5,xq == xs}
Contains

s
z* = min { Zws(chs—i-q:ys) : conv{(xs,ys) €Ss,s=1,...,5,x1=--= xs}}
s=1



So what?

5
— 4@ L] L] L] L]
36 L] L] L] L]
s, —
‘ 26 L] L] L] L]
14 L] L] L] L]
S ® 2 e ¥ -4 5

| )

Y

S]

u}
o)
I
i
it




SO What?

convs,

{(x5,¥5) € conv S, s = 1,2,x1 = x5}




So what?

S,

~g

conv{(xs, ¥s) € S5, 5 = 1,2,x1 = x5}
°

_

N



So what?

Nevertheless, the feasible region of

s
zip = min { ZWS(CTXs—l-q:ys) D (xs,ys) €EconvSs,s =1,...,8,xq == Xs}

s=1

However it is contained in the feasible region of

s
z1p :min{ZWsCTXs-Fquys (X, ys) €S s=1,..., 8, x =" :Xs}

s=1



How do we solve the dual?

D()) is concave in A.



How do we solve the dual?




How do we solve the dual?

D()) splits into S independent problems

D()\) = min { Z (75 (c T xs+q] s ) +AHsxs] : (Xs,y5) € Ss,5 = 1,...

X7
Y s=1

Thus, at every iteration of the sub-gradient method we solve S
smaller problems.



A Branch and Bound algorithm

So far it is clear that:
» In general we observe a duality gap (z.p < z*)
» The duality gap emerges because NACs are violated
> zip > z1p

Idea: use Branch and Bound to fix NACs!



A Branch and Bound algorithm

STEP 1 Set Z = +o00 and P contains only the original
stochastic program.



A Branch and Bound algorithm

STEP 1 Set Z = +o00 and P contains only the original
stochastic program.

STEP 2 If P = () STOP, solution (X, y), which yielded
7 =c'x 4 Q(X) is optimal.



A Branch and Bound algorithm

STEP 1 Set Z = +o00 and P contains only the original
stochastic program.

STEP 2 If P = () STOP, solution (X, y), which yielded
7 =c'x 4 Q(X) is optimal.

STEP 3 Select and delete a node P from P and solve its

Lagrangian dual whose optimal objective yields
zip(P). If P is infeasible go to STEP 2.



A Branch and Bound algorithm

STEP 4 If z,p(P) > Z go to STEP 2. Otherwise, let
(xP,yP)3_, be the solution to the dual.



A Branch and Bound algorithm

STEP 4 If z,p(P) > Z go to STEP 2. Otherwise, let
(xP,yP)3_, be the solution to the dual.
4.A IfxiD:-~-:x§D
Update Z if possible
Delete from P all problems P" with z;,p(P') > Z
Go to STEP 2.



A Branch and Bound algorithm

STEP 4 If z,p(P) > z go to STEP 2. Otherwise, let

(xP,yP)2_, be the solution to the dual.



A Branch and Bound algorithm

STEP 4 If z,p(P) > z go to STEP 2. Otherwise, let

(xP,yP)2_, be the solution to the dual.

4.B If the xP solutions are different:

Compute their average XF = 25521 msxt



A Branch and Bound algorithm

STEP 5 Select a component x' of x and add two new
problems to P, that is PU {x{ < [%F|} and
PU{xi>|%F| +1}.
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Feasibility

If FP(x¥,&5) > 0 for some s, let 0¥ be its optimal solution. The
feasibility cut
(o) (hs = Tex) < 0

cuts off the second-stage-infeasible solution x" ¢ KCs.

Proof.
Assume x¥ ¢ Ko — 3 s with FD(XV,fs) = FP(XV,fs) >0

FP(x",&) = (0¥)"(hs — Tsx¥) >0
o) optimal to FP(x¥, &) —x" does not satisfy

(U;)T(hs —Tsx) <0



Feasibility

Solution x! € K, satisfies feasibility cuts

(0¥) T (hs — Tex) <0

S

Proof.
Assume x' € K5, then

FP(x', &) = FP(x',&) =0 s=1,...,§

Solution ¢ to FP(x¥, &) is feasible for problem FP(x!, &) but
not optimal.

0= FP(x,&) = (09) " (hs — Tox) 2 (o) (hs — ToxX')

. Thus x’ € K5 does not violate the feasibility cut.



Optimality

Proof optimality cuts.

Proof.
Assume ¢¥ < Q(x"). Then we have

S

S
¢¥ < Q(x) =D mQP(x",&) =) ms(p) T (hs — Tex")
s=1

s=1

pY optimal for Q(xY,&s). Constraint

S
¢ = ZWS(P:)T(hs — Tsx)
s=1

is not satisfied by (x", ¢").



Optimality

Proof.
Assume ¢/ > Q(x')

S S
¢I > Q(XI) = ZWsQD(XI’&) = ZWS(PQ)T(/’S - TsXI)
s=1 s=1

Zﬂ'sps (hs —TX >Z7r5 py) (hs—Tsxl)

s=1

p! is feasible for QP(x/, &) while pl is optimal. Thus

¢>Z7Ts(ps h_TX)



Lagrangian Relaxation

For all A\, D(\) < z*

Proof.
Take (x,y¥)2_; and an arbitrary A. We can write
S S S
=Y m(c'x+alyl) =) m(cTx+alyd) + A Hext
s=1 s=1 s=1
=0

Continues next slide... O



Lagrangian Relaxation

Proof.

Furthermore

S
Z "X Haly) A Hx

s=1
=0
s S

s=1 s=1

s

= min{ZLs(Xs,ys,}\\) D (Xs,¥5) € Ss,5 = 1,...,5} =D(})

s=1

> min{ZWS(CTXs'i‘quys) +:\Z Hsxs : (Xs7}’s) € Ssas: 1775}



We can close the gap!

Proof.
Take ), solve D(\) and assume (%, Js)3_; is feasible for the SP.
) ) S
D)= me(c &+q) J) +A) Hste = > me(c %+ ¢/ Js)
s=1 s=1 s=1
———
=0 Objective of (Xs,95)3_, in SP

Continues next slide ... O



We can close the gap!

Proof.
On the other hand
S S
D(\) = Z:lﬂs(c—r?s + q;r)’}s) + )\Z:I Hixs < m):f\x D(\) = zip
s= s—
=0
Thus
S
Z WS(CT’?S + qu)A’s) <zip
s=1

Objective of (Xs,95)2_; in SP

That is, z.p is an upper bound the objective value of (Xs, Jis)2_; .
Continues next slide ... ]



We can close the gap!

Proof.
However, we know that z;p is a lower bound.
Therefore

s
ZLDSZ ¢'%+q) Js) < 21D

This holds only if

S
Z Ts (CT)?S + q;l')/}s) =ZID

s=1

This, \ is optimal for the dual and (Xs,ys) _, is optimal for the
primal.



Proof optimality gap

S

D(\) = nguyn {WS(CTXS + quys) + AHsxs : (xs5,¥5) € Ss,s=1,..., 5}
s=1 e
s
= Z min {71'5 (chs + quys) + MHsxs 1 (xs,ys5) € convSs,s =1,..., S}
£ s

Continues next slide ...



Proof optimality gap

Therefore we can rewrite the dual as

z1p =max D()\)

S

= mfxz; min {7r5 (CTXS + quys) + AHsxs : (Xs,¥s) € convSs,s =1, ...
—

Xs:Ys

Continues next slide ...



Proof optimality gap

Therefore we can rewrite the dual as

ZIp = m;:ax D(X)

s
= mfle min {71'5 (chs + quys) + AHsxs : (Xs,¥s) € convSs,s =1,..., 5}
—

Xs,Ys
If convSs = () for some s, z;p = oo, (SP is infeasible).

Otherwise, assume convS; is bounded for all s and let (x%, yX) for

k € Ks be its extreme points. (Continues next slide ...)



Proof optimality gap

The optimum of each D(\) is attained at one of its extreme
points...

Eﬂm

D()\ = {71'5 c X + g5 ys)_‘_)‘HSXsk}

s=1

and, in turn

zLD:makang;Q {71’5 c’ x + g, ys)+/\H5xsk}

Continues next slide ...



Proof optimality gap

The same problem can be rewritten as follows

s
z1p zngixz:us
s=1
fs < ms(c XK+ qd yE) + MHext ke Ks,s=1,...,S

by bringing all the decision variables on the left-hand-side ...

S
Z|p = max
A ;us
us—stsk)\gﬂs(chsk—i—quysk) (ks) keKs,s=1,...,S

Continues next slide ...



Proof optimality gap

Let us now take the dual of

S
Z|p = max E Hs
A
s=1

fts — Hsxt\ < 75 (cTxE + ¢l k) (oks) keKs,s=1,...
S
Zip = min Z Z ﬂ's(CTXSk + q;rysk)ozks

s=1 kekKs

Zaks—l s=1,...,S

keKs

S

Z Z —HgxXoys =0

s=1 keks

ks > 0 keKs,s=1,...,5

Continues next slide ...



Proof optimality gap
The dual is selecting points in the convex hulls, provided that the
points selected are non-anticipative, that is

S
zip=minY > w(c"xE+ ql yE)aus

s=1 ke,
> s =1 s=1,...,S
keKs
S
k _
> Y b =0
s=1 ke,
aks > 0 keKs,s=1,...,5
corresponds to
s
zip = min { Zﬂs(c—rxs—l—q:ys) D (Xs,¥5) EconvSs,;s=1,...,5,x =+ = Xs}
s=1

This completes the proof



Proof concavity

D()) is concave in \.

Proof.
Take A1 and A>. You need to show that

aD(A1) + (1 — @)D(A2) < D(ad; + (1 — a)ro)

with o € [0, 1].
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