Stochastic Programming

Solution Methods

Giovanni Pantuso

Department of Mathematical Sciences
University of Copenhagen
Copenhagen, Denmark

Table of Contents

L-Shaped Method
Feasibility
Optimality
The algorithm
Dealing with integers
Dual Decomposition
Lagrangian Relaxation
Mind the gap!
Solving the Dual
Branch and Bound
Some Proofs
Proofs L-Shaped Method
Proofs Dual Decomposition

Applicability

Two-stage linear stochastic programs with recourse where

- $\boldsymbol{\xi}$ is a discrete random variable,
- $\mathcal{X}=\mathbb{R}_{+}^{n_{1}}$,
- $\mathcal{Y}=\mathbb{R}_{+}^{n_{2}}$.

The integer case requires some adjustments.

Recall

The deterministic equivalent problem

$$
\begin{aligned}
& \min z=c^{T} x+Q(x) \\
& \text { s.t. } A x=b \\
& \quad x \geq 0
\end{aligned}
$$

where

$$
Q(x)=\sum_{s=1}^{S} \pi_{s} Q\left(x, \xi_{s}\right)
$$

and

$$
Q\left(x, \xi_{s}\right)=\min _{y}\left\{q_{s}^{T} y \mid W_{s} y=h_{s}-T_{s} x, y \geq 0\right\}
$$

Recall

We call $\mathcal{K}_{1}=\{x \mid A x=b, x \geq 0\}$ When $\mathcal{Y}=\mathbb{R}_{+}^{n_{2}}$ and ξ is discrete:

- $Q(x)$ is piecewise linear and convex in x
- \mathcal{K}_{2} is a closed and convex polyhedron

This will help..

A reformulation of the DEP

$$
\begin{gathered}
\min z=c^{\top} x+Q(x) \\
\text { s.t. } x \in \mathcal{K}_{1} \cap \mathcal{K}_{2}
\end{gathered}
$$

A reformulation of the DEP

If we introduce a variable ϕ we can obtain another reformulation

$$
\begin{aligned}
\min z & =c^{T} x+\phi \\
\text { s.t. } x & \in \mathcal{K}_{1} \\
x & \in \mathcal{K}_{2} \\
\phi & \geq Q(x)
\end{aligned}
$$

A reformulation of the DEP

A reformulation of the DEP

Polyhedral formulation, but with way too many constraints..

Idea! Drop $x \in \mathcal{K}_{2}$ and $\phi \geq Q(x)$ and reconstruct them iteratively... (We may not need all of their constraints).

The Master Problem

At a generic iteration..

$$
\begin{array}{cl}
\min z=c^{T} x+\phi & \\
\text { s.t. } x \in \mathcal{K}_{1} & \\
f_{i}(x) \leq 0 & i=1, \ldots, l, \\
g_{j}(x, \phi) \leq 0 & j=1, \ldots, J
\end{array}
$$

The Master Problem

At a generic iteration..

$$
\begin{array}{cl}
\min z=c^{\top} x+\phi & \\
\text { s.t. } x \in \mathcal{K}_{1} & \\
f_{i}(x) \leq 0 & i=1, \ldots, l, \\
g_{j}(x, \phi) \leq 0 & j=1, \ldots, J
\end{array}
$$

Initially $I=J=0$.

Feasibility

At iteration v we solve MP and find $\left(x^{v}, \phi^{v}\right)$.
Does $x^{\vee} \in \mathcal{K}_{2}$? Let's check:

For each s we solve the feasibility subproblem.

Feasibility

$$
\begin{aligned}
& F^{P}\left(x^{v}, \xi_{s}\right)=\min _{y, v^{+}, v^{-}} e^{\top} v^{+}+e^{\top} v^{-} \\
& \text {s.t. } W_{s} y+I v^{+}-l v^{-}=h_{s}-T_{s} x^{v}, \\
& y, v^{+}, v^{-} \geq 0
\end{aligned}
$$

where $e^{\top}=(1, \ldots, 1)$ and I is the identity matrix.

Find the differences:

$$
Q\left(x, \xi_{s}\right)=\min _{y}\left\{q_{s}^{T} y \mid W_{s} y=h_{s}-T_{s} x, y \geq 0\right\}
$$

Feasibility

$F^{P}\left(x^{v}, \xi_{s}\right)=\min _{y, v^{+}, v^{-}}\left\{e^{\top} v^{+}+e^{\top} v^{-} \mid W_{s} y+l v^{+}-l v^{-}=h_{s}-T_{s} x^{v}, y, v^{+}, v^{-} \geq 0\right\}$
Its dual

$$
F^{D}\left(x^{v}, \xi_{s}\right)=\max _{\sigma}\left\{\sigma^{\top}\left(h_{s}-T_{s} x^{v}\right) \mid \sigma^{\top} W_{s} \leq 0, \sigma^{\top} I \leq e^{\top},-\sigma^{\top} I \leq e^{\top}\right\}
$$

Both are always feasible. Strong duality $F^{D}\left(x^{v}, \xi_{s}\right)=F^{P}\left(x^{v}, \xi_{s}\right)$.

Feasibility

If $F^{P}\left(x^{v}, \xi_{s}\right)=F^{D}\left(x^{v}, \xi_{s}\right)=0$ for all s then $x^{v} \in \mathcal{K}_{2}$ otherwise it does not.

If $x^{v} \notin \mathcal{K}_{2}$ we need to tell MP that x^{v} is not a good solution and must be cut off.

Feasibility

If $F^{D}\left(x^{v}, \xi_{s}\right)>0$ for some s, let σ_{s}^{v} be its optimal solution. The feasibility cut

$$
\left(\sigma_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x\right) \leq 0
$$

cuts off the second-stage-infeasible solution $x^{\vee} \notin \mathcal{K}_{2}$.

Feasibility

Adding

$$
\left(\sigma_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x\right) \leq 0
$$

to MP will cut off solution x^{v} at the next iteration.

Feasibility

Solution $x^{\prime} \in \mathcal{K}_{2}$ satisfies feasibility cuts

$$
\left(\sigma_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x\right) \leq 0
$$

Feasibility

Summary:

- we know how verify $x^{\vee} \in \mathcal{K}_{2}$,
- we know that $\left(\sigma_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x\right) \leq 0$ will cut off infeasible solutions,
- we know that $\left(\sigma_{s}^{\nu}\right)^{\top}\left(h_{s}-T_{s} x\right) \leq 0$ will not cut off feasible solutions.

Optimality

Assume $\left(x^{v}, \phi^{v}\right)$ is now such that

$$
x^{v} \in \mathcal{K}_{2}
$$

. We should now verify whether

$$
\phi^{v} \geq Q\left(x^{v}\right)
$$

. We need to calculate

$$
Q\left(x^{v}\right)=\sum_{s=1}^{S} \pi_{s} Q\left(x^{v}, \xi_{s}\right)
$$

Optimality

For $s=1, \ldots, S$ solve

$$
Q^{P}\left(x^{v}, \xi_{s}\right)=\min _{y}\left\{q_{s}^{\top} y \mid W_{s} y=h_{s}-T_{s} x^{v}, y \geq 0\right\}
$$

or its dual

$$
Q^{D}\left(x^{\vee}, \xi_{s}\right)=\max _{\rho}\left\{\rho^{\top}\left(h_{s}-T_{s} x^{\vee}\right) \mid \rho^{\top} W_{s} \leq q_{s}^{\top}\right\}
$$

Optimality

Observe:

- $Q^{P}\left(x^{v}, \xi_{s}\right)$ is feasible (and, we assume, bounded)
- $Q^{P}\left(x^{v}, \xi_{s}\right)=Q^{D}\left(x^{v}, \xi_{s}\right)$,
- $Q\left(x^{v}\right)=\sum_{s=1}^{S} \pi_{s} Q^{P}\left(x^{v}, \xi_{s}\right)=\sum_{s=1}^{S} \pi_{s} Q^{D}\left(x^{v}, \xi_{s}\right)$.

Optimality

If $\phi^{v}<Q\left(x^{v}\right)$, then $\left(x^{v}, \phi^{v}\right)$ is cut off by optimality cut

$$
\phi \geq \sum_{s=1}^{S} \pi_{s}\left(\rho_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x\right)
$$

where ρ_{s}^{v} is the optimal solution to $Q^{D}\left(x^{v}, \xi_{s}\right)$.

Optimality

$\left(x^{\prime}, \phi^{\prime}\right)$, such that $\phi^{\prime} \geq Q\left(x^{\prime}\right)$, satisfies

$$
\phi \geq \sum_{s=1}^{S} \pi_{s}\left(\rho_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x\right)
$$

Optimality

Summarizing:

- We know how to check optimality,
- We know how to cut off (x^{v}, ϕ^{v}) such that $\phi^{v}<Q\left(x^{v}\right)$,
- We know that optimality cuts preserve $\left(x^{\prime}, \phi^{\prime}\right)$ such that $\phi^{\prime} \geq Q\left(x^{\prime}\right)$.

Putting everything together

1. Solve MP (initially no cuts) to find $\left(x^{v}, \phi^{v}\right)$

Putting everything together

1. Solve MP (initially no cuts) to find (x^{v}, ϕ^{v})
2. For $s=1, \ldots, S$ solve $F^{D}\left(x^{v}, \xi_{s}\right)$

Putting everything together

1. Solve MP (initially no cuts) to find (x^{v}, ϕ^{v})
2. For $s=1, \ldots, S$ solve $F^{D}\left(x^{v}, \xi_{s}\right)$
3. If $F^{D}\left(x^{v}, \xi_{s}\right)>0$ for some s, add a feasibility cut and return to STEP 1 .

Putting everything together

1. Solve MP (initially no cuts) to find (x^{v}, ϕ^{v})
2. For $s=1, \ldots, S$ solve $F^{D}\left(x^{v}, \xi_{s}\right)$
3. If $F^{D}\left(x^{v}, \xi_{s}\right)>0$ for some s, add a feasibility cut and return to STEP 1.
4. For $s=1, \ldots, S$ solve $Q^{D}\left(x^{v}, \xi_{s}\right)$ and calculate $Q\left(x^{v}\right)$

Putting everything together

1. Solve MP (initially no cuts) to find (x^{v}, ϕ^{v})
2. For $s=1, \ldots, S$ solve $F^{D}\left(x^{v}, \xi_{s}\right)$
3. If $F^{D}\left(x^{v}, \xi_{s}\right)>0$ for some s, add a feasibility cut and return to STEP 1.
4. For $s=1, \ldots, S$ solve $Q^{D}\left(x^{v}, \xi_{s}\right)$ and calculate $Q\left(x^{v}\right)$
5. If $\phi^{v} \geq Q\left(x^{v}\right)$, STOP $\left(x^{v}, \phi^{v}\right)$ is optimal otherwise add an optimality cut and return to STEP 1 .

A finite algorithm

The algorithm converges

- finitely many possible cuts
- if (at most) all cuts are available, the solution to MP is optimal.

Bounds

$$
c^{\top} x^{v}+\phi^{v} \leq z^{*} \leq c^{\top} x^{v}+Q\left(x^{v}\right)
$$

Dealing with integers

Integer variables in the first stage
VS

Integer variables in the second stage

Dealing with integers

Integer variables in the first stage:
Embed the L-Shaped Method into Branch and Bound.

Dealing with integers

Integer variables in the second stage (and binary first stage):
Let $L \leq Q(x) \forall x$

Dealing with integers

Integer variables in the second stage (and binary first stage):
Let $L \leq Q(x) \forall x$
Let x^{v} integer solution at node v

Dealing with integers

Integer variables in the second stage (and binary first stage):
Let $L \leq Q(x) \forall x$
Let x^{v} integer solution at node v
Let \mathcal{I}_{v} indices for which $x^{v}=1$

Dealing with integers

Integer variables in the second stage (and binary first stage):

$$
\phi \geq\left(Q\left(x^{v}\right)-L\right)\left|\sum_{i \in \mathcal{I}_{v}} x_{i}-\sum_{i \notin \mathcal{I}_{v}} x_{i}\right|-\left(Q\left(x^{v}\right)-L\right)\left(\left|\mathcal{I}_{v}\right|-1\right)+L
$$

Dealing with integers

Integer variables in the second stage (and binary first stage):
How does it work?

$$
\begin{aligned}
& x=x^{v} \Longrightarrow \phi \geq Q\left(x^{v}\right) \\
& x \neq x^{v} \Longrightarrow \phi \geq L^{v} \leq L
\end{aligned}
$$

Dealing with integers

Integer variables in the second stage (and binary first stage):
The bound can be improved by looking in the neighborhood of x^{v}.
Classical (duality based) L-Shaped cuts on the LP relaxation help a lot!

Table of Contents

L-Shaped Method
Feasibility
Optimality
The algorithm
Dealing with integers
Dual Decomposition
Lagrangian Relaxation
Mind the gap!
Solving the Dual
Branch and Bound
Some Proofs
Proofs L-Shaped Method
Proofs Dual Decomposition

Applicability

Multistage stochastic programs (possibly integer at all stages)

Applicability

Multistage stochastic programs (possibly integer at all stages)

- $\boldsymbol{\xi}$ is a discrete random variable (assume not too large)
- \mathcal{X}_{t} may contain integrality restrictions on all/some decision variables.

In a nutshell

Figure 1

In a nutshell

In a nutshell

- Use a scenario formulation

In a nutshell

- Use a scenario formulation
- Relax NACs (Lagrangian Relaxation)

In a nutshell

- Use a scenario formulation
- Relax NACs (Lagrangian Relaxation)
- Use the Lagrangian bound in a Branch and Bound framework

In a nutshell

- Use a scenario formulation
- Relax NACs (Lagrangian Relaxation)
- Use the Lagrangian bound in a Branch and Bound framework
- Branch until NACs are reconstructed

Reformulation

Assume a two-stage SP

$$
\mathcal{S}_{s}=\left\{\left(x, y_{s}\right): x \in \mathcal{K}_{1}, x \in \mathcal{X}, T_{s} x+W_{s} y_{s}=h_{s}, y_{s} \in \mathcal{Y}\right\}
$$

We can write the two-stage stochastic program as follows

$$
z^{*}=\min \left\{c^{\top} x+\sum_{s=1}^{S} \pi_{s} q_{s}^{\top} y_{s}:\left(x, y_{s}\right) \in \mathcal{S}_{s}, s=1, \ldots, S\right\}
$$

Reformulation

$$
\begin{aligned}
& z^{*}=\min \left\{c^{\top} x+\sum_{s=1}^{S} \pi_{s} q_{s}^{\top} y_{s}:\left(x, y_{s}\right) \in \mathcal{S}_{s}, s=1, \ldots, S\right\} \\
& z^{*}=\min \left\{\sum_{s=1}^{S} \pi_{s}\left(c^{\top} x_{s}+q_{s}^{\top} y_{s}\right) \left\lvert\, \begin{array}{l}
\left(x_{s}, y_{s}\right) \in \mathcal{S}_{s}, \\
x_{1}=x_{2}=\cdots \quad=1, \ldots, S \\
=x_{S-1}=x_{S}
\end{array}\right.\right\}
\end{aligned}
$$

Reformulation

$$
\left.\begin{array}{c}
z^{*}=\min \left\{c^{\top} x+\sum_{s=1}^{S} \pi_{s} q_{s}^{\top} y_{s}:\left(x, y_{s}\right) \in \mathcal{S}_{s}, s=1, \ldots, S\right\} \\
z^{*}=\min \left\{\sum_{s=1}^{S} \pi_{s}\left(c^{\top} x_{s}+q_{s}^{\top} y_{s}\right) \left\lvert\, \begin{array}{l}
\left(x_{s}, y_{s}\right) \in \mathcal{S}_{s}, \\
x_{1}=x_{2}=\cdots \\
s=1, \ldots, S \\
x_{S-1}=x_{S}
\end{array}\right.\right\}
\end{array}\right\}, ~ \begin{gathered}
x_{1}=x_{2}=\cdots=x_{S-1}=x_{S} \Longrightarrow \sum_{s=1}^{S} H_{s} x_{s}=0
\end{gathered}
$$

Lagrangian Relaxation

$$
z^{*}=\min \left\{\begin{array}{l|l}
\sum_{s=1}^{S} \pi_{s}\left(c^{\top} x_{s}+q_{s}^{\top} y_{s}\right) & \begin{array}{l}
\left(x_{s}, y_{s}\right) \in \mathcal{S}_{s}, \quad s=1, \ldots, S \\
\sum_{s=1}^{S} H_{s} x_{s}=0
\end{array}
\end{array}\right\}
$$

Lagrangian Relaxation

$$
z^{*}=\min \left\{\begin{array}{c|cc}
\sum_{s=1}^{S} \pi_{s}\left(c^{\top} x_{s}+q_{s}^{\top} y_{s}\right) & \begin{array}{c}
\left(x_{s}, y_{s}\right) \in \mathcal{S}_{s}, \\
\sum_{s=1}^{S} H_{s} x_{s}=0
\end{array} & s=1, \ldots, S \\
\hline
\end{array}\right\}
$$

For given λ

$$
D(\lambda)=\min _{x, y}\left\{\sum_{s=1}^{s}\left[\pi_{s}\left(c^{\top} x_{s}+q_{s}^{\top} y_{s}\right)+\lambda H_{s} x_{s}\right]:\left(x_{s}, y_{s}\right) \in \mathcal{S}_{s}, s=1, \ldots, s\right\}
$$

Lagrangian Relaxation

For all λ,

$$
D(\lambda) \leq z^{*}
$$

The Lagrangian Dual

$$
z_{L D}=\max _{\lambda} D(\lambda)
$$

The Lagrangian Dual

$$
z_{L D}=\max _{\lambda} D(\lambda)
$$

$$
z_{L D} \leq z^{*}
$$

We can close the gap!

If for some choice of λ the solution $\left(x_{s}, y_{s}\right)_{s=1}^{S}$ to $D(\lambda)$ is feasible for the stochastic program, then

We can close the gap!

If for some choice of λ the solution $\left(x_{s}, y_{s}\right)_{s=1}^{S}$ to $D(\lambda)$ is feasible for the stochastic program, then

- $\left(x_{s}, y_{s}\right)_{s=1}^{S}$ is an optimal solution to the stochastic program,

We can close the gap!

If for some choice of λ the solution $\left(x_{s}, y_{s}\right)_{s=1}^{S}$ to $D(\lambda)$ is feasible for the stochastic program, then

- $\left(x_{s}, y_{s}\right)_{s=1}^{S}$ is an optimal solution to the stochastic program,
- λ is an optimal solution to the Lagrangian dual.

Usually, we are not so lucky

However,

$$
z_{L D}=\min \left\{\begin{array}{l|l}
\sum_{s=1}^{s} \pi_{s}\left(c^{\top} x_{s}+q_{s}^{\top} y_{s}\right) & \begin{array}{c}
\left(x_{s}, y_{s}\right) \in \operatorname{conv} \mathcal{S}_{s}, \quad s=1, \ldots, S \\
x_{1}=\cdots=x_{s}
\end{array}
\end{array}\right\}
$$

But usually we do not close the gap...

But usually we do not close the gap..

So what?

The feasible region of
$z_{L D}=\min \left\{\sum_{s=1}^{s} \pi_{s}\left(c^{\top} x_{s}+q_{s}^{\top} y_{s}\right):\left(x_{s}, y_{s}\right) \in \operatorname{conv} \mathcal{S}_{s}, s=1, \ldots, S, x_{1}=\cdots=x_{s}\right\}$
Contains
$z^{*}=\min \left\{\sum_{s=1}^{s} \pi_{s}\left(c^{\top} x_{s}+q_{s}^{\top} y_{s}\right): \operatorname{conv}\left\{\left(x_{s}, y_{s}\right) \in \mathcal{S}_{s}, s=1, \ldots, S, x_{1}=\cdots=x_{s}\right\}\right\}$

So what?

So what?

So what?

So what?

Nevertheless, the feasible region of
$z_{L D}=\min \left\{\sum_{s=1}^{s} \pi_{s}\left(c^{\top} x_{s}+q_{s}^{\top} y_{s}\right):\left(x_{s}, y_{s}\right) \in \operatorname{conv} \mathcal{S}_{s}, s=1, \ldots, S, x_{1}=\cdots=x_{s}\right\}$
However it is contained in the feasible region of

$$
z_{L P}=\min \left\{\sum_{s=1}^{s} \pi_{s} c^{\top} x_{s}+q_{s}^{\top} y_{s}:\left(x_{s}, y_{s}\right) \in \mathcal{S}_{s}^{L P}, s=1, \ldots, S, x_{1}=\cdots=x_{s}\right\}
$$

How do we solve the dual?

$D(\lambda)$ is concave in λ.

How do we solve the dual?

How do we solve the dual?

$D(\lambda)$ splits into S independent problems

$$
D(\lambda)=\min _{x, y}\left\{\sum_{s=1}^{s}\left[\pi_{s}\left(c^{\top} x_{s}+q_{s}^{\top} y_{s}\right)+\lambda H_{s} x_{s}\right]:\left(x_{s}, y_{s}\right) \in \mathcal{S}_{s}, s=1, \ldots, S\right\}
$$

Thus, at every iteration of the sub-gradient method we solve S smaller problems.

A Branch and Bound algorithm

So far it is clear that:

- In general we observe a duality gap ($z_{L D}<z^{*}$)
- The duality gap emerges because NACs are violated
- $z_{L D} \geq z_{L P}$

Idea: use Branch and Bound to fix NACs!

A Branch and Bound algorithm

STEP 1 Set $\bar{z}=+\infty$ and \mathcal{P} contains only the original stochastic program.

A Branch and Bound algorithm

STEP 1 Set $\bar{z}=+\infty$ and \mathcal{P} contains only the original stochastic program.
STEP 2 If $\mathcal{P}=\emptyset$ STOP, solution (\bar{x}, \bar{y}), which yielded $\bar{z}=c^{\top} \bar{x}+Q(\bar{x})$ is optimal.

A Branch and Bound algorithm

STEP 1 Set $\bar{z}=+\infty$ and \mathcal{P} contains only the original stochastic program.
STEP 2 If $\mathcal{P}=\emptyset$ STOP, solution (\bar{x}, \bar{y}), which yielded $\bar{z}=c^{\top} \bar{x}+Q(\bar{x})$ is optimal.
STEP 3 Select and delete a node P from \mathcal{P} and solve its Lagrangian dual whose optimal objective yields $z_{L D}(P)$. If P is infeasible go to STEP 2.

A Branch and Bound algorithm

STEP 4 If $z_{L D}(P) \geq \bar{z}$ go to STEP 2. Otherwise, let $\left(x_{s}^{P}, y_{s}^{P}\right)_{s=1}^{S}$ be the solution to the dual.

A Branch and Bound algorithm

STEP 4 If $z_{L D}(P) \geq \bar{z}$ go to STEP 2. Otherwise, let $\left(x_{s}^{P}, y_{s}^{P}\right)_{s=1}^{S}$ be the solution to the dual.
4.A If $x_{1}^{P}=\cdots=x_{S}^{P}$

Update \bar{z} if possible
Delete from \mathcal{P} all problems P^{\prime} with $z_{L D}\left(P^{\prime}\right) \geq \bar{z}$
Go to STEP 2.

A Branch and Bound algorithm

STEP 4 If $z_{L D}(P) \geq \bar{z}$ go to STEP 2. Otherwise, let $\left(x_{s}^{P}, y_{s}^{P}\right)_{s=1}^{S}$ be the solution to the dual.

A Branch and Bound algorithm

STEP 4 If $z_{L D}(P) \geq \bar{z}$ go to STEP 2. Otherwise, let $\left(x_{s}^{P}, y_{s}^{P}\right)_{s=1}^{S}$ be the solution to the dual.
4.B If the x_{s}^{P} solutions are different:

Compute their average $\hat{x}^{P}=\sum_{s=1}^{S} \pi_{s} x_{s}^{P}$

A Branch and Bound algorithm

STEP 5 Select a component x^{i} of x and add two new problems to \mathcal{P}, that is $P \cup\left\{x_{s}^{i} \leq\left\lfloor\hat{x}_{i}^{P}\right\rfloor\right\}$ and $P \cup\left\{x_{s}^{i} \geq\left\lfloor\hat{x}_{i}^{P}\right\rfloor+1\right\}$.

Table of Contents

L-Shaped Method
Feasibility
Optimality
The algorithm
Dealing with integers
Dual Decomposition
Lagrangian Relaxation
Mind the gap!
Solving the Dual
Branch and Bound
Some Proofs
Proofs L-Shaped Method
Proofs Dual Decomposition

Feasibility

If $F^{D}\left(x^{v}, \xi_{s}\right)>0$ for some s, let σ_{s}^{v} be its optimal solution. The feasibility cut

$$
\left(\sigma_{s}^{\nu}\right)^{\top}\left(h_{s}-T_{s} x\right) \leq 0
$$

cuts off the second-stage-infeasible solution $x^{\vee} \notin \mathcal{K}_{2}$.
Proof.
Assume $x^{v} \notin \mathcal{K}_{2} \rightarrow \exists s$ with $F^{D}\left(x^{v}, \xi_{s}\right)=F^{P}\left(x^{v}, \xi_{s}\right)>0$

$$
F^{D}\left(x^{v}, \xi_{s}\right)=\left(\sigma_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x^{v}\right)>0
$$

σ_{s}^{\vee} optimal to $F^{D}\left(x^{\vee}, \xi_{s}\right) \rightarrow x^{\vee}$ does not satisfy

$$
\left(\sigma_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x\right) \leq 0
$$

Feasibility

Solution $x^{\prime} \in \mathcal{K}_{2}$ satisfies feasibility cuts

$$
\left(\sigma_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x\right) \leq 0
$$

Proof.
Assume $x^{\prime} \in \mathcal{K}_{2}$, then

$$
F^{D}\left(x^{\prime}, \xi_{s}\right)=F^{P}\left(x^{\prime}, \xi_{s}\right)=0 \quad s=1, \ldots, S
$$

Solution σ_{s}^{v} to $F^{D}\left(x^{v}, \xi_{s}\right)$ is feasible for problem $F^{D}\left(x^{\prime}, \xi_{s}\right)$ but not optimal.

$$
0=F^{D}\left(x^{\prime}, \xi_{s}\right)=\left(\sigma_{s}^{\prime}\right)^{\top}\left(h_{s}-T_{s} x^{\prime}\right) \geq\left(\sigma_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x^{\prime}\right)
$$

. Thus $x^{\prime} \in \mathcal{K}_{2}$ does not violate the feasibility cut.

Optimality

Proof optimality cuts.
Proof.
Assume $\phi^{v}<Q\left(x^{v}\right)$. Then we have

$$
\phi^{v}<Q\left(x^{v}\right)=\sum_{s=1}^{S} \pi_{s} Q^{D}\left(x^{v}, \xi_{s}\right)=\sum_{s=1}^{S} \pi_{s}\left(\rho_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x^{v}\right)
$$

ρ_{s}^{v} optimal for $Q\left(x^{v}, \xi_{s}\right)$. Constraint

$$
\phi \geq \sum_{s=1}^{S} \pi_{s}\left(\rho_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x\right)
$$

is not satisfied by $\left(x^{v}, \phi^{v}\right)$.

Optimality

Proof.
Assume $\phi^{\prime} \geq Q\left(x^{\prime}\right)$

$$
\begin{gathered}
\phi^{\prime} \geq Q\left(x^{\prime}\right)=\sum_{s=1}^{S} \pi_{s} Q^{D}\left(x^{\prime}, \xi_{s}\right)=\sum_{s=1}^{S} \pi_{s}\left(\rho_{s}^{\prime}\right)^{\top}\left(h_{s}-T_{s} x^{\prime}\right) \\
\sum_{s=1}^{S} \pi_{s}\left(\rho_{s}^{\prime}\right)^{\top}\left(h_{s}-T_{s} x^{\prime}\right) \geq \sum_{s=1}^{S} \pi_{s}\left(\rho_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x^{\prime}\right)
\end{gathered}
$$

ρ_{s}^{v} is feasible for $Q^{D}\left(x^{\prime}, \xi_{s}\right)$ while ρ_{s}^{\prime} is optimal. Thus

$$
\phi^{\prime} \geq \sum_{s=1}^{S} \pi_{s}\left(\rho_{s}^{v}\right)^{\top}\left(h_{s}-T_{s} x^{\prime}\right)
$$

Lagrangian Relaxation

For all $\lambda, D(\lambda) \leq z^{*}$
Proof.
Take $\left(x_{s}^{*}, y_{s}^{*}\right)_{s=1}^{S}$ and an arbitrary $\hat{\lambda}$. We can write

$$
z^{*}=\sum_{s=1}^{S} \pi_{s}\left(c^{\top} x_{s}^{*}+q_{s}^{\top} y_{s}^{*}\right)=\sum_{s=1}^{S} \pi_{s}\left(c^{\top} x_{s}^{*}+q_{s}^{\top} y_{s}^{*}\right)+\hat{\lambda} \underbrace{\sum_{s=1}^{S} H_{s} x_{s}^{*}}_{=0}
$$

Continues next slide...

Lagrangian Relaxation

Proof.

Furthermore

$$
\begin{aligned}
& \sum_{s=1}^{S} \pi_{s}\left(c^{\top} x_{s}^{*}+q_{s}^{\top} y_{s}^{*}\right)+\hat{\lambda} \underbrace{\sum_{s=1}^{s} H_{s} x_{s}^{*}}_{=0} \\
& \quad \geq \min _{x, y}\left\{\sum_{s=1}^{s} \pi_{s}\left(c^{\top} x_{s}+q_{s}^{\top} y_{s}\right)+\hat{\lambda} \sum_{s=1}^{s} H_{s} x_{s}:\left(x_{s}, y_{s}\right) \in \mathcal{S}_{s}, s=1, \ldots, S\right\} \\
& \quad=\min _{x, y}\left\{\sum_{s=1}^{s} L_{s}\left(x_{s}, y_{s}, \hat{\lambda}\right):\left(x_{s}, y_{s}\right) \in \mathcal{S}_{s}, s=1, \ldots, S\right\}=D(\hat{\lambda})
\end{aligned}
$$

We can close the gap!

Proof.
Take $\hat{\lambda}$, solve $D(\hat{\lambda})$ and assume $\left(\hat{x}_{s}, \hat{y}_{S}\right)_{s=1}^{S}$ is feasible for the $S P$.

$$
D(\hat{\lambda})=\sum_{s=1}^{S} \pi_{s}\left(c^{\top} \hat{x}_{s}+q_{s}^{\top} \hat{y}_{s}\right)+\hat{\lambda} \underbrace{\sum_{s=1}^{S} H_{s} \hat{x}_{s}}_{=0}=\underbrace{\sum_{s=1}^{S} \pi_{s}\left(c^{\top} \hat{x}_{s}+q_{s}^{\top} \hat{y}_{s}\right)}_{\text {Objective of }\left(\hat{x}_{s}, \hat{y}_{s}\right)_{s=1}^{S} \text { in } S P}
$$

Continues next slide ...

We can close the gap!

Proof.

On the other hand

$$
D(\hat{\lambda})=\sum_{s=1}^{S} \pi_{s}\left(c^{\top} \hat{x}_{s}+q_{s}^{\top} \hat{y}_{s}\right)+\hat{\lambda} \underbrace{\sum_{s=1}^{S} H_{s} \hat{x}_{s}}_{=0} \leq \max _{\lambda} D(\lambda)=z_{L D}
$$

Thus

$$
\underbrace{\sum_{s=1}^{S} \pi_{s}\left(c^{\top} \hat{x}_{s}+q_{s}^{\top} \hat{y}_{s}\right)}_{\text {Objective of }\left(\hat{x}_{s}, \hat{y}_{s}\right)_{s=1}^{S} \text { in } S P} \leq z_{L D}
$$

That is, $z_{L D}$ is an upper bound the objective value of $\left(\hat{x}_{s}, \hat{y}_{s}\right)_{s=1}^{S}$.
Continues next slide ...

We can close the gap!

Proof.

However, we know that $z_{L D}$ is a lower bound.
Therefore

$$
z_{L D} \leq \sum_{s=1}^{s} \pi_{s}\left(c^{\top} \hat{x}_{s}+q_{s}^{\top} \hat{y}_{s}\right) \leq z_{L D}
$$

This holds only if

$$
\sum_{s=1}^{s} \pi_{s}\left(c^{\top} \hat{x}_{s}+q_{s}^{\top} \hat{y}_{s}\right)=z_{L D}
$$

This, $\hat{\lambda}$ is optimal for the dual and $\left(\hat{x}_{s}, \hat{y}_{S}\right)_{s=1}^{S}$ is optimal for the primal.

Proof optimality gap

$$
\begin{aligned}
D(\lambda) & =\sum_{s=1}^{s} \min _{x_{s}, y_{s}}\left\{\pi_{s}\left(c^{\top} x_{s}+q_{s}^{\top} y_{s}\right)+\lambda H_{s} x_{s}:\left(x_{s}, y_{s}\right) \in \mathcal{S}_{s}, s=1, \ldots, S\right\} \\
& =\sum_{s=1}^{s} \min _{x_{s}, y_{s}}\left\{\pi_{s}\left(c^{\top} x_{s}+q_{s}^{\top} y_{s}\right)+\lambda H_{s} x_{s}:\left(x_{s}, y_{s}\right) \in \operatorname{conv} \mathcal{S}_{s}, s=1, \ldots, S\right\}
\end{aligned}
$$

Continues next slide ...

Proof optimality gap

Therefore we can rewrite the dual as

$$
\begin{aligned}
z_{L D} & =\max _{\lambda} D(\lambda) \\
& =\max _{\lambda} \sum_{s=1}^{S} \min _{x_{s}, y_{s}}\left\{\pi_{s}\left(c^{\top} x_{s}+q_{s}^{\top} y_{s}\right)+\lambda H_{s} x_{s}:\left(x_{s}, y_{s}\right) \in \operatorname{conv} \mathcal{S}_{s}, s=1, \ldots, S\right\}
\end{aligned}
$$

Continues next slide ...

Proof optimality gap

Therefore we can rewrite the dual as

$$
\begin{aligned}
z_{L D} & =\max _{\lambda} D(\lambda) \\
& =\max _{\lambda} \sum_{s=1}^{s} \min _{x_{s}, y_{s}}\left\{\pi_{s}\left(c^{\top} x_{s}+q_{s}^{\top} y_{s}\right)+\lambda H_{s} x_{s}:\left(x_{s}, y_{s}\right) \in \operatorname{conv} \mathcal{S}_{s}, s=1, \ldots, s\right\}
\end{aligned}
$$

If conv $\mathcal{S}_{s}=\emptyset$ for some $s, z_{L D}=\infty$, (SP is infeasible).
Otherwise, assume conv \mathcal{S}_{s} is bounded for all s and let $\left(x_{s}^{k}, y_{s}^{k}\right)$ for $k \in \mathcal{K}_{s}$ be its extreme points. (Continues next slide ...)

Proof optimality gap

The optimum of each $D(\lambda)$ is attained at one of its extreme points...

$$
D(\lambda)=\sum_{s=1}^{s} \min _{k \in \mathcal{K}_{s}}\left\{\pi_{s}\left(c^{\top} x_{s}^{k}+q_{s}^{\top} y_{s}^{k}\right)+\lambda H_{s} x_{s}^{k}\right\}
$$

and, in turn

$$
z_{L D}=\max _{\lambda} \sum_{s=1}^{S} \min _{k \in \mathcal{K}_{s}}\left\{\pi_{s}\left(c^{\top} x_{s}^{k}+q_{s}^{\top} y_{s}^{k}\right)+\lambda H_{s} x_{s}^{k}\right\}
$$

Continues next slide ...

Proof optimality gap

The same problem can be rewritten as follows

$$
\begin{aligned}
z_{L D}= & \max _{\lambda, \mu} \sum_{s=1}^{S} \mu_{s} \\
& \mu_{s} \leq \pi_{s}\left(c^{\top} x_{s}^{k}+q_{s}^{\top} y_{s}^{k}\right)+\lambda H_{s} x_{s}^{k} \quad k \in \mathcal{K}_{s}, s=1, \ldots, S
\end{aligned}
$$

by bringing all the decision variables on the left-hand-side ...

$$
\begin{aligned}
z_{L D}= & \max _{\lambda, \mu} \sum_{s=1}^{S} \mu_{s} \\
& \mu_{s}-H_{s} x_{s}^{k} \lambda \leq \pi_{s}\left(c^{\top} x_{s}^{k}+q_{s}^{\top} y_{s}^{k}\right) \quad\left(\alpha_{k s}\right) \quad k \in \mathcal{K}_{s}, s=1, \ldots, S
\end{aligned}
$$

Continues next slide ...

Proof optimality gap

Let us now take the dual of

$$
\begin{aligned}
& z_{L D}=\max _{\lambda, \mu} \sum_{s=1}^{S} \mu_{s} \\
& \mu_{s}-H_{s} x_{s}^{k} \lambda \leq \pi_{s}\left(c^{\top} x_{s}^{k}+q_{s}^{\top} y_{s}^{k}\right) \quad\left(\alpha_{k s}\right) \quad k \in \mathcal{K}_{s}, s=1, \ldots, S \\
& z_{L D}=\min \sum_{s=1}^{S} \sum_{k \in \mathcal{K}_{s}} \pi_{s}\left(c^{\top} x_{s}^{k}+q_{s}^{\top} y_{s}^{k}\right) \alpha_{k s} \\
& \sum_{k \in \mathcal{K}_{s}} \alpha_{k s}=1 \\
& \sum_{s=1}^{S} \sum_{k \in \mathcal{K}_{s}}-H_{s} x_{s}^{k} \alpha_{k s}=0 \\
& \alpha_{k s} \geq 0 \\
& k \in \mathcal{K}_{s}, s=1, \ldots, S
\end{aligned}
$$

Continues next slide ...

Proof optimality gap

The dual is selecting points in the convex hulls, provided that the points selected are non-anticipative, that is

$$
\begin{array}{rlr}
z_{L D}= & \min \sum_{s=1}^{S} \sum_{k \in \mathcal{K}_{s}} \pi_{s}\left(c^{\top} x_{s}^{k}+q_{s}^{\top} y_{s}^{k}\right) \alpha_{k s} & \\
& \sum_{k \in \mathcal{K}_{s}} \alpha_{k s}=1 & s=1, \ldots, S \\
& \sum_{s=1}^{S} \sum_{k \in \mathcal{K}_{s}}-H_{s} x_{s}^{k} \alpha_{k s}=0 & \\
& \alpha_{k s} \geq 0 & k \in \mathcal{K}_{s}, s=1, \ldots, S
\end{array}
$$

corresponds to
$z_{L D}=\min \left\{\sum_{s=1}^{S} \pi_{s}\left(c^{\top} x_{s}+q_{s}^{\top} y_{s}\right):\left(x_{s}, y_{s}\right) \in \operatorname{conv} \mathcal{S}_{s}, s=1, \ldots, S, x_{1}=\cdots=x_{S}\right\}$
This completes the proof

Proof concavity

$D(\lambda)$ is concave in λ.
Proof.
Take λ_{1} and λ_{2}. You need to show that

$$
\alpha D\left(\lambda_{1}\right)+(1-\alpha) D\left(\lambda_{2}\right) \leq D\left(\alpha \lambda_{1}+(1-\alpha) \lambda_{2}\right)
$$

with $\alpha \in[0,1]$.

Back

