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Formulate general stochastic programs
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multi-stage) for a risk neutral decision maker

What makes them difficult and how to address the difficulty

How to solve them assuming a small number of decision stages...
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▶ Large number of stages
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▶ Distributionally robust

▶ Non-linear

▶ Multi-objective

▶ Endogenous uncertainty
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Two-Stage Stochastic Programs with Recourse

The decision maker:

1. Makes x ∈ X ⊆ Rn1 (first stage)

2. Waits for the outcome ω ∈ Ω of some random experiment. ω
determines ξ(ω) (our random data)

3. Makes y(ω) ∈ Y ⊆ Rn2 , given ξ and x (second stage)



Two-Stage Stochastic Programs with Recourse

The decision maker:

1. Makes x ∈ X ⊆ Rn1 (first stage)

2. Waits for the outcome ω ∈ Ω of some random experiment. ω
determines ξ(ω) (our random data)

3. Makes y(ω) ∈ Y ⊆ Rn2 , given ξ and x (second stage)



Two-Stage Stochastic Programs with Recourse

The decision maker:

1. Makes x ∈ X ⊆ Rn1 (first stage)

2. Waits for the outcome ω ∈ Ω of some random experiment. ω
determines ξ(ω) (our random data)

3. Makes y(ω) ∈ Y ⊆ Rn2 , given ξ and x (second stage)



Two-Stage Stochastic Programs with Recourse

min z =c⊤ x + Eξ[minq(ω)T y(ω)]



Two-Stage Stochastic Programs with Recourse

min z =c⊤ x + Eξ[minq(ω)T y(ω)]
s.t. Ax = b,



Two-Stage Stochastic Programs with Recourse

min z =c⊤ x + Eξ[minq(ω)T y(ω)]
s.t. Ax = b,

T (ω)x + W (ω)y(ω) = h(ω),
x ∈ X , y(ω) ∈ Y



Two-Stage Stochastic Programs with Recourse

Parameters c ∈ Rn1 , b ∈ Rm1 , and A ∈ Rn1×m1 are known.

Parameters q(ω) ∈ Rn2 , h(ω) ∈ Rm2 , W (ω) ∈ Rm2×n2 and
T (ω) ∈ Rm2×n1 are uncertain.

ξ(ω) =
(
q(ω)⊤,h(ω)⊤, W 1(ω),. . .,W (ω)m2 ,T (ω)1,. . .,T (ω)m2

)
.

ξ is a realization.

(Ω,F ,P)

We only need a specification of ξ (e.g., probability density/mass
function and support Ξ).
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min z = c⊤ x + Q(x)

s.t.Ax = b

x ∈ X

where
Q(x) = Eξ[Q(x , ξ)]

Q(x , ξ) = min
y
{q(ω)⊤ y |W (ω)y = h(ω)− T (ω)x , y ∈ Y}.
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Discrete ξ

Consider Ξ = {ξ1, . . . , ξS} with probabilities πs , s = 1 . . . ,S .

ξs =⇒ q⊤s ,Ts ,Ws , hs .

y(ω) becomes y1, . . . , yS .
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Two-Stage Stochastic Programs with Recourse with
Discrete ξ

min z =c⊤ x +
S∑

s=1

πsq
T
s ys

s.t. Ax = b,

Tsx +Wsys = hs , s = 1, . . . ,S

x ∈ X ,

ys ∈ Y, s = 1, . . . ,S .



Multistage Stochastic Programs with Recourse

The decision maker:

1. Makes decisions x1 based on ξ1

2. Waits for outcome ξ2(ω2)

3. Makes decisions x2(ω2) based on x1 and realization ξ1, ξ2

4. Waits for ξ3(ω3)

5. Makes decisions x3(ω3) based on x1, x2 and realization
ξ1, ξ2, ξ3

6. ....

7. Waits for ξT (ωT )

8. Makes decisions xT (ωT )
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...

TT−1(ωT )xT−1(ωT−1) + WT (ωT )xT (ωT ) = hT (ωT ),

x1 ∈ X1, xt(ωt) ∈ Xt , t = 2, . . . ,T .



Multistage Stochastic Programs with Recourse

QT (xT−1,ξ[T ]) = min cT xT

s.t. WT xT = hT − TT−1xT−1

xT ∈ XT

for t = 2, . . . ,T − 1

Qt(xt−1, ξt) =min ctxt + Qt+1(xt)

s.t. Wtxt = ht − Tt−1xt−1

xt ∈ Xt

where Qt+1(xt) = Eξt+1|ξ[t] [Qt+1(xt , ξt+1)].
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Multistage Stochastic Programs with Recourse

Finally

min z = c1x1 + Q2(x1)

s.t. W1x1 = h1,

x1 ∈ X1.



Multistage Stochastic Programs with Recourse with
Discrete ξ

Special structure called a Scenario Tree.

Example: Assume a three-stage random process ξ = (ξ1, ξ2, ξ3).
ξ1 is known (assume 10) and at every t

▶ the value is doubled with a probability of 0.5

▶ the value is halved with a probability of 0.5
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Multistage Stochastic Programs with Recourse with
Discrete ξ
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Multistage Stochastic Programs with Recourse with
Discrete ξ

Example: Assume a three-stage random process ξ = (ξ1, ξ2, ξ3).
ξ1 is known (assume (10, 50)) and at every t

▶ the value is doubled with a probability of 0.5

▶ the value is halved with a probability of 0.5
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Multistage Stochastic Programs with Recourse with
Discrete ξ

Node formulation

min z =
∑
n∈N

πnc
⊤
n xn

s.t. W1x1 = h1,

Wnxn + Ta(n)xa(n) = hn ∀n ∈ N \ {1},
xn ∈ Xt(n) ∀n ∈ N .
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Multistage Stochastic Programs with Recourse with
Discrete ξ

Scenario formulation

min z =
∑
s∈S

∑
t∈T

πsc
⊤
ts xts

s.t. W1sx1s = h1s , s ∈ S,
Wtsxts + Tt−1,sxt−1,s = hts , s ∈ S, t ∈ T \ {1},
non-anticipativity constraints

xts ∈ Xt s ∈ S, t ∈ T .



Multistage Stochastic Programs with Recourse with
Discrete ξ

Non-anticipativity constraints

xts − xts′ = 0 ∀t ∈ T , s, s ′ ∈ S : ξ1s , . . . , ξts = ξ1s′ , . . . , ξts′



Multistage Stochastic Programs with Recourse with
Discrete ξ

Scenario formulation or Node formulation?
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A closer look at ξ

Where do we get ξ?

▶ Number of failures ≈ Weibull

▶ Wind speed ≈ Weibull,Rayleigh

▶ Forecast error (linear regression) ≈ Normal

▶ Hospitalization in certain epidemics ≈ LogNormal

▶ Repair times ≈ LogNormal

▶ Choice model ≈ Gumbel, Normal, EV Type I

▶ Waiting times ≈ Beta
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A closer look at ξ

High dimensions and mixes are problematic
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A closer look at Q(x)

The recourse function ...

Q(x) = Eξ

[
Q(x , ξ)

]
=

∫
Ω
Q(x , ξ(ω))P(dω)

Why is this difficult?

Ingredient 1: a closed form expression Q(x , ξ)

Ingredient 2: an antiderivative

Observe: Q(x) =
∫ ∫

· · ·
∫
Q(x , ξ)D(ξ)dξ1dξ2 · · · dξN
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A closer look at Q(x)

The recourse function ...

Q(x) = Eξ

[
Q(x , ξ)

]
=

∫
Ω
Q(x , ξ(ω))P(dω)

Idea! Numerical integration!



A closer look at Q(x)

In one dimension (i.e., N = 1): Riemann sums, Trapezoidal rule,
Simpson’s rule

Ex. Riemann Sums ∫ b

a
f (x)dx

▶ Partition [a, b] using K points x0 = a, x1,. . .,xK = b equally
spaced ∆x

▶
∫ b
a f (x)dx ≈

∑
k f (xk)∆x

▶ As K increases we improve the approximation.



A closer look at Q(x)

In multiple dimensions: Quadrature methods.

Same principle, harder partition

−1 1 2 3 4 5

−1

1

2

3

4

5

6

ξ1

ξ2
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Numerical integration: it is already an approximation

all this work for one x ...

we still have to solve the stochastic program..
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Q(x) =
S∑

s=1
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Monte Carlo in a nutshell

Make K identical copies ξ1, . . . , ξK of ξ

From each take, independently, a realization ξk .

Write the SAA

min zK =c⊤ x +
K∑

k=1

1

K
qTk yk

s.t. Ax = b,

Tkx +Wkyk = hk , k = 1, . . . ,K

x ∈ X ,

yk ∈ Y, k = 1, . . . ,K .
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Monte Carlo in a nutshell

Advantages

f K (x) is an unbiased estimator (pointwise x = x̄)

zK → z∗ as k → ∞ (exponentially fast!)

E[zK ] gives a statistical lower bound! (obs! zK is biased)

E
[
c⊤x̄ + 1

K

∑K
k=1[Q(x̄ , ξk)]

]
gives a statistical upper bound!

See, e.g., [Sha91, MMW99, Sha03].
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Method based on Probability Metrics in a nutshell

Results from research on stability, see,e.g.,
[Dup90, Pfl01, RR02, Röm03].

|z(P)− z(Q)| ≤ Ld(P,Q)



Method based on Probability Metrics in a nutshell

▶ Start from large N scenarios (e.g., sampled)

▶ Remove one scenario at a time to minimize the distanced
between the new and old distribution

▶ Add the probability of the deleted scenarios to the closest
scenarios (in the sense of the probability metric)

Scenario reduction/generation, see, e.g., [HR03, DGKR03].
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Property Matching in a nutshell

Idea: Replicate only the statistical properties that are important for
the problem [HW01].

Create a small distribution that replicates only those properties.
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Problem driven.

Observe: requires an NLP (heuristics exist [HKW03])
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Approximations

Getting a good solution vs Estimating its value



Mathematical properties of discrete stochastic programs

K2(ξ) = {x |∃y ≥ 0, s.t.W (ω)y = h(ω)− T (ω)x}

Convex and polyhedral!
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K2 = Rn1
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.



Mathematical properties of discrete stochastic programs

Useful jargon

Complete recourse
K2 = Rn1

Relatively complete recourse

K2 ⊆ K1 = {x |Ax = b, x ≥ 0}

.



Mathematical properties of discrete stochastic programs

Q(x , ξ) is:

a. piece-wise linear convex in h, T and x ,

b. piece-wise linear concave in q.



Mathematical properties of discrete stochastic programs

Q(x) = EξQ(x , ξ) =
S∑

s=1

πsQ(x , ξs)

piece-wise linear convex in x .
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