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In a nutshell

• A possible way to dynamically adjust prices in carsharing
services

• A stochastic programming model

• An exact algorithm

• Some results
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The problem

Given

• A target period (e.g., 14:00 - 15:00)

• Current position of the vehicles

• Cumulative mobility demand between each pair of zones in
the target period

• Usage and relocation costs

• A model of customers preferences

Decide

• the drop-off fees for the target period (λijl)

• the relocations to perform (zvi )

Maximize profits
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The model

max−
∑
v∈V

∑
i∈I

CR
vi zvi + Q(z , λ)∑

i∈I
zvi = 1 v ∈ V∑

l∈L
λijl = 1 i , j ∈ I

zvi ∈ {0, 1} i ∈ I, v ∈ V
λijl ∈ {0, 1} i , j ∈ I, l ∈ L.



The model

Q(z , λ) := Eξ̃

[
Q(z , λ, ξ)

]
ξ̃ models the uncertain preferences of the customers
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Second stage

Q(z, λ, ξ) = max
∑

r∈R(ξ)

∑
v∈V

∑
l∈Lr (ξ)

Rvrl yvrl

∑
v∈V

∑
l∈Lr (ξ)

yvrl ≤ 1 r ∈ R(ξ)

∑
r∈R(ξ)

∑
l∈Lr (ξ)

yvrl ≤ 1 v ∈ V

∑
l∈Lr1

(ξ)

yv,r1,l +
∑

r2∈Rr1
(ξ)

∑
l∈Lr2

(ξ)

yv,r2,l ≤ zv,i(r1)
r1 ∈ R(ξ), v ∈ V

yv,r1,l1 +
∑

r2∈Rr1
(ξ)

∑
l2∈Lr2

(ξ)

yv,r2,l2 +
∑

v1∈V:v1 ̸=v

yv1,r1,l1

≥ λi(r1),j(rj ),l1
+ zv,i(r1)

− 1 r1 ∈ R(ξ), v ∈ V, l1 ∈ Lr1
(ξ)∑

v∈V
yvrl ≤ λi(r),j(r),l r ∈ R(ξ), l ∈ Lr (ξ)

yvrl ∈ {0, 1} r ∈ R(ξ), v ∈ V, l ∈ Lr (ξ)



Benders decomposition

Two-Stage Stochastic Integer Program, with integers at both
stages.

Benders decomposition’s key ingredients:

• Fast exact algorithm for the second-stage sub-problems
(O
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)
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• Complete recourse

• Ad-hoc optimality cuts

• Multi-cut

• Something to help optimality cuts
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Benders decomposition

Master problem

max−
∑
v∈V

∑
i∈I

CR
vi zvi +

∑
s∈S

πsϕs∑
i∈I

zvis = 1 v ∈ V∑
l∈L

λijl = 1 i ∈ I, j ∈ J

zvi ∈ {0, 1} i ∈ I, v ∈ V
λijl ∈ {0, 1} i ∈ I, j ∈ I, l ∈ L
ϕs free s ∈ S.



Benders decomposition

Proposition

Let (z t , λt) be the t-th feasible solution to MP, and Q(z , λ, ξs) its
second-stage value for scenario s. The set of cuts

ϕs ≤
(
Q(z , λ, ξs)− Us

)( ∑
(v ,i)∈Z+

t

zvi

−
∑

(v ,i)∈Z−
t

zvi +
∑

(i ,j ,l)∈Λ+
t

λijl −
∑

(i ,j ,l)∈Λ−
t

λijl

)

+ Us −
(
Q(z , λ, ξs)− Us

)(
|Z+

t |+ |Λ+
t | − 1

)
defined for all (z t , λt) feasible to MP is a valid set of optimality
cuts.

Proof.
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Results

CPLEX L-Shaped

|V| |K| αFROM αTO gap t gap gapR gap50 t

50 200 0.2 0.2 0.0014 297.99 0.4747 21.5553 0.4747 1801.00
50 400 0.2 0.2 0.4151 1804.09 6.5981 59.3308 8.9622 1800.13
50 600 0.2 0.2 - - 13.6751 52.5981 18.9363 1800.03

100 200 0.2 0.2 0.0000 221.91 0.0000 8.9488 - 16.47
100 400 0.2 0.2 - - 0.4829 26.1941 0.8372 1801.67
100 600 0.2 0.2 - - 9.2186 40.2920 9.2848 1805.22
200 400 0.2 0.2 - - 0.0000 9.9094 - 229.96
200 600 0.2 0.2 - - 0.0571 14.7626 0.0579 1801.39

50 200 0.2 0.8 0.0067 381.59 0.5159 20.9177 0.5159 1800.11
50 400 0.2 0.8 0.3913 1800.30 3.5957 43.2969 4.3436 1800.03
50 600 0.2 0.8 - - 14.1098 63.4863 16.2944 1802.22

100 200 0.2 0.8 0.0000 199.66 0.1800 10.6250 0.1800 1800.13
100 400 0.2 0.8 - - 0.1798 22.5452 0.3266 1800.02
100 600 0.2 0.8 - - 9.1325 36.2728 9.8433 1808.65
200 400 0.2 0.8 - - 0.0000 59.2478 - 165.06
200 600 0.2 0.8 - - 0.1327 15.6153 0.4830 1800.02



Solutions

Table: Comparison of the solutions with and without dynamic pricing on
the instances with 50 vehicles and 600 customers.

Distribution Metric With dynamic pricing Without dynamic pricing

D1 Expected Profit [%] 100 81.78
% of vehicles Relocated 26.0 10.0
Min |R(ξ)| 167 80
Max |R(ξ)| 195 107
Expected % Requests satisfied 24 42

D2 Expected Profit [%] 100 66.06
% of vehicles Relocated 22.0 2.0
Min |R(ξ)| 168 81
Max |R(ξ)| 187 105
Expected % Requests satisfied 26 49

D3 Expected Profit [%] 100 65.05
% of vehicles Relocated 18.0 6.0
Min |R(ξ)| 167 80
Max |R(ξ)| 195 107
Expected % Requests satisfied 26 49

D4 Expected Profit [%] 100 66.36
% of vehicles Relocated 10.0 0.0
Min |R(ξ)| 168 81
Max |R(ξ)| 187 105
Expected % Requests satisfied 26 48



Take-aways

• A possible way of setting prices in CS services

• Complex integer stochastic program, but Benders
decomposition went a long way

• Increases profits for the company

• Currently trying heuristics (with some help..)


