Benders decomposition for a carsharing pricing problem under uncertainty

Giovanni Pantuso Dept.Mathematical Sciences University of Copenhagen

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

In a nutshell

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- A possible way to dynamically adjust prices in carsharing services
- A stochastic programming model
- An exact algorithm
- Some results

Focus:

• One-way car-sharing service

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Focus:

• One-way car-sharing service

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Problem:

• Imbalanced distributions

Focus:

• One-way car-sharing service

Problem:

- Imbalanced distributions
- A possible fix:
 - Adjust prices as the distribution changes

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Take into account

• Users choose among different transport modes (e.g., metro, carsharing, bike, bus)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Take into account

- Users choose among different transport modes (e.g., metro, carsharing, bike, bus)
- Users have preferences (price, walking distance, crowd, time, weather...)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Take into account

- Users choose among different transport modes (e.g., metro, carsharing, bike, bus)
- Users have preferences (price, walking distance, crowd, time, weather...)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Preferences are not fully known to the CS company

Assumption

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Zones

Assumption

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Drop-off fee + per-minute fee

Assumption

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Alternative transport services

Given

• A target period (e.g., 14:00 - 15:00)

Decide

Maximize profits

・ロト・西ト・ヨト・ヨー うらぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Given

- A target period (e.g., 14:00 15:00)
- Current position of the vehicles

Decide

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Given

- A target period (e.g., 14:00 15:00)
- Current position of the vehicles
- Cumulative mobility demand between each pair of zones in the target period

Decide

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Given

- A target period (e.g., 14:00 15:00)
- Current position of the vehicles
- Cumulative mobility demand between each pair of zones in the target period
- Usage and relocation costs

Decide

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Given

- A target period (e.g., 14:00 15:00)
- Current position of the vehicles
- Cumulative mobility demand between each pair of zones in the target period
- Usage and relocation costs
- A model of customers preferences

Decide

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Given

- A target period (e.g., 14:00 15:00)
- Current position of the vehicles
- Cumulative mobility demand between each pair of zones in the target period
- Usage and relocation costs
- A model of customers preferences

Decide

the drop-off fees for the target period (λ_{ijl})

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Given

- A target period (e.g., 14:00 15:00)
- Current position of the vehicles
- Cumulative mobility demand between each pair of zones in the target period
- Usage and relocation costs
- A model of customers preferences

Decide

- the drop-off fees for the target period (λ_{ijl})
- the relocations to perform (z_{vi})

The model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

$$\begin{split} \max &-\sum_{v\in\mathcal{V}}\sum_{i\in\mathcal{I}}\mathcal{C}_{vi}^R z_{vi} + \mathcal{Q}(z,\lambda) \\ &\sum_{i\in\mathcal{I}} z_{vi} = 1 & v\in\mathcal{V} \\ &\sum_{l\in\mathcal{L}}\lambda_{ijl} = 1 & i,j\in\mathcal{I} \\ &z_{vi}\in\{0,1\} & i\in\mathcal{I}, v\in\mathcal{V} \\ &\lambda_{ijl}\in\{0,1\} & i,j\in\mathcal{I}, l\in\mathcal{L}. \end{split}$$

The model

・ロト・(型ト・(型ト・(型ト))

$$Q(z,\lambda) := \mathbb{E}_{ ilde{\xi}} igg[Q(z,\lambda,\xi) igg]$$

 $\tilde{\xi}$ models the uncertain preferences of the customers

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Each customer has unique preferences

$$F_{kv}(p_v, \pi_{vij}^1, \ldots, \pi_{vij}^N) + \tilde{\xi}_{kv}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Each customer has unique preferences

$$F_{kv}(p_v,\pi_{vij}^1,\ldots,\pi_{vij}^N)+\widetilde{\xi}_{kv}$$

$$\tilde{\xi} = (\xi_{kv})_{k \in \mathcal{K}, v \in \mathcal{V}}$$

◆□ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶ < </p>

Given a realization ξ of $\tilde{\xi}$ we know what customers prefer.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Given a realization ξ of $\tilde{\xi}$ we know what customers prefer.

For each ξ realization (scenario) we can spot the set of customers $\mathcal{R}(\xi)$ which would use CS at some price level.

• Each car is rented at most once

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Each car is rented at most once
- Each customer gets at most one car

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- Each car is rented at most once
- Each customer gets at most one car
- A customer uses CS if the drop-off fee is low enough

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Each car is rented at most once
- Each customer gets at most one car
- A customer uses CS if the drop-off fee is low enough
- First-come-first-served

$$\begin{aligned} Q(z,\lambda,\xi) &= \max \sum_{r \in \mathcal{R}(\xi)} \sum_{v \in \mathcal{V}} \sum_{l \in \mathcal{L}_{r}(\xi)} R_{vrl} y_{vrl} \\ &\sum_{v \in \mathcal{V}} \sum_{l \in \mathcal{L}_{r}(\xi)} y_{vrl} \leq 1 \qquad r \in \mathcal{R}(\xi) \\ &\sum_{r \in \mathcal{R}(\xi)} \sum_{l \in \mathcal{L}_{r}(\xi)} y_{vrl} \leq 1 \qquad v \in \mathcal{V} \\ &\sum_{l \in \mathcal{L}_{r_{1}}(\xi)} \sum_{v \in \mathcal{V}} y_{vr_{1},l} + \sum_{r_{2} \in \mathcal{R}_{r_{1}}(\xi)} \sum_{l \in \mathcal{L}_{r_{2}}(\xi)} y_{v,r_{2},l} \leq z_{v,i(r_{1})} \qquad r_{1} \in \mathcal{R}(\xi), v \in \mathcal{V} \\ &y_{v,r_{1},l_{1}} + \sum_{r_{2} \in \mathcal{R}_{r_{1}}(\xi)} \sum_{l \geq \mathcal{L}_{r_{2}}(\xi)} y_{v,r_{2},l_{2}} + \sum_{v_{1} \in \mathcal{V}: v_{1} \neq v} y_{v_{1},r_{1},l_{1}} \\ &\geq \lambda_{i(r_{1}),j(r_{j}),l_{1}} + z_{v,i(r_{1})} - 1 \qquad r_{1} \in \mathcal{R}(\xi), v \in \mathcal{V}, l_{1} \in \mathcal{L}_{r_{1}}(\xi) \\ &\sum_{v \in \mathcal{V}} y_{vrl} \leq \lambda_{i(r),j(r),l} \qquad r \in \mathcal{R}(\xi), l \in \mathcal{L}_{r}(\xi) \\ &y_{vrl} \in \{0,1\} \qquad r \in \mathcal{R}(\xi), v \in \mathcal{V}, l \in \mathcal{L}_{r}(\xi) \end{aligned}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Two-Stage Stochastic Integer Program, with integers at both stages.

Benders decomposition's key ingredients:

• Fast exact algorithm for the second-stage sub-problems $(\mathcal{O}(|\mathcal{R}(\xi_s)| \times |\mathcal{V}|))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Two-Stage Stochastic Integer Program, with integers at both stages.

- Fast exact algorithm for the second-stage sub-problems $(\mathcal{O}(|\mathcal{R}(\xi_s)| \times |\mathcal{V}|))$
- Complete recourse

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Two-Stage Stochastic Integer Program, with integers at both stages.

- Fast exact algorithm for the second-stage sub-problems $(\mathcal{O}(|\mathcal{R}(\xi_s)| \times |\mathcal{V}|))$
- Complete recourse
- Ad-hoc optimality cuts

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Two-Stage Stochastic Integer Program, with integers at both stages.

- Fast exact algorithm for the second-stage sub-problems $(\mathcal{O}(|\mathcal{R}(\xi_s)| \times |\mathcal{V}|))$
- Complete recourse
- Ad-hoc optimality cuts
- Multi-cut

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Two-Stage Stochastic Integer Program, with integers at both stages.

- Fast exact algorithm for the second-stage sub-problems $(\mathcal{O}(|\mathcal{R}(\xi_s)| \times |\mathcal{V}|))$
- Complete recourse
- Ad-hoc optimality cuts
- Multi-cut
- Something to help optimality cuts

Master problem

$$\begin{split} \max & -\sum_{v \in \mathcal{V}} \sum_{i \in \mathcal{I}} C_{vi}^R z_{vi} + \sum_{s \in \mathcal{S}} \pi_s \phi_s \\ & \sum_{i \in \mathcal{I}} z_{vis} = 1 \qquad \qquad v \in \mathcal{V} \\ & \sum_{l \in \mathcal{L}} \lambda_{ijl} = 1 \qquad \qquad i \in \mathcal{I}, j \in \mathcal{J} \\ & z_{vi} \in \{0, 1\} \qquad \qquad i \in \mathcal{I}, v \in \mathcal{V} \\ & \lambda_{ijl} \in \{0, 1\} \qquad \qquad i \in \mathcal{I}, j \in \mathcal{I}, l \in \mathcal{L} \\ & \phi_s \text{ free} \qquad \qquad s \in \mathcal{S}. \end{split}$$

・ロ・・ 「「・・」、 ・ 「」、 ・ 「」、 ・ (□・・ (□・・))

Proposition

Let (z^t, λ^t) be the t-th feasible solution to MP, and $Q(z, \lambda, \xi_s)$ its second-stage value for scenario s. The set of cuts

$$\begin{split} \phi_s \leq & \left(Q(z,\lambda,\xi_s) - U_s \right) \left(\sum_{(v,i) \in \mathcal{Z}_t^+} z_{vi} \right. \\ & \left. - \sum_{(v,i) \in \mathcal{Z}_t^-} z_{vi} + \sum_{(i,j,l) \in \Lambda_t^+} \lambda_{ijl} - \sum_{(i,j,l) \in \Lambda_t^-} \lambda_{ijl} \right) \\ & \left. + U_s - \left(Q(z,\lambda,\xi_s) - U_s \right) \left(|\mathcal{Z}_t^+| + |\Lambda_t^+| - 1 \right) \end{split}$$

defined for all (z^t, λ^t) feasible to MP is a valid set of optimality cuts.

Proof.

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ● ● ● ● ●

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Computationally catastrofic!

Computationally catastrofic!

LP relaxation cuts made it work

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Computationally catastrofic!

LP relaxation cuts made it work

Plus some simmetry breaking

Results

				CPLEX		L-Shaped			
$ \mathcal{V} $	$ \mathcal{K} $	$\alpha^{\textit{FROM}}$	α^{TO}	gap	t	gap	gapR	gap50	t
50	200	0.2	0.2	0.0014	297.99	0.4747	21.5553	0.4747	1801.00
50	400	0.2	0.2	0.4151	1804.09	6.5981	59.3308	8.9622	1800.13
50	600	0.2	0.2	-	-	13.6751	52.5981	18.9363	1800.03
100	200	0.2	0.2	0.0000	221.91	0.0000	8.9488	-	16.47
100	400	0.2	0.2	-	-	0.4829	26.1941	0.8372	1801.67
100	600	0.2	0.2	-	-	9.2186	40.2920	9.2848	1805.22
200	400	0.2	0.2	-	-	0.0000	9.9094	-	229.96
200	600	0.2	0.2	-	-	0.0571	14.7626	0.0579	1801.39
50	200	0.2	0.8	0.0067	381.59	0.5159	20.9177	0.5159	1800.11
50	400	0.2	0.8	0.3913	1800.30	3.5957	43.2969	4.3436	1800.03
50	600	0.2	0.8	-	-	14.1098	63.4863	16.2944	1802.22
100	200	0.2	0.8	0.0000	199.66	0.1800	10.6250	0.1800	1800.13
100	400	0.2	0.8	-	-	0.1798	22.5452	0.3266	1800.02
100	600	0.2	0.8	-	-	9.1325	36.2728	9.8433	1808.65
200	400	0.2	0.8	-	-	0.0000	59.2478	-	165.06
200	600	0.2	0.8	-	-	0.1327	15.6153	0.4830	1800.02

Solutions

Table: Comparison of the solutions with and without dynamic pricing on the instances with 50 vehicles and 600 customers.

Distribution	Metric	With dynamic pricing	Without dynamic pricing
D1	Expected Profit [%]	100	81.78
	% of vehicles Relocated	26.0	10.0
	$Min \mathcal{R}(\xi) $	167	80
	$Max \mathcal{R}(\xi) $	195	107
	Expected % Requests satisfied	24	42
D2	Expected Profit [%]	100	66.06
	% of vehicles Relocated	22.0	2.0
	$Min \mathcal{R}(\xi) $	168	81
	$Max \mathcal{R}(\xi) $	187	105
	Expected % Requests satisfied	26	49
D3	Expected Profit [%]	100	65.05
	% of vehicles Relocated	18.0	6.0
	$Min \mathcal{R}(\xi) $	167	80
	$Max \mathcal{R}(\xi) $	195	107
	Expected % Requests satisfied	26	49
D4	Expected Profit [%]	100	66.36
	% of vehicles Relocated	10.0	0.0
	$Min \mathcal{R}(\xi) $	168	81
	$Max \mathcal{R}(\xi) $	187	105
	Expected % Requests satisfied	26	48

Take-aways

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- A possible way of setting prices in CS services
- Complex integer stochastic program, but Benders decomposition went a long way
- Increases profits for the company
- Currently trying heuristics (with some help..)