Benders decomposition for a carsharing pricing problem under uncertainty

Giovanni Pantuso
Dept.Mathematical Sciences
University of Copenhagen

In a nutshell

- A possible way to dynamically adjust prices in carsharing services
- A stochastic programming model
- An exact algorithm
- Some results

Focus:

- One-way car-sharing service

Focus:

- One-way car-sharing service

Problem:

- Imbalanced distributions

Focus:

- One-way car-sharing service

Problem:

- Imbalanced distributions

A possible fix:

- Adjust prices as the distribution changes

Take into account

- Users choose among different transport modes (e.g., metro, carsharing, bike, bus)

Take into account

- Users choose among different transport modes (e.g., metro, carsharing, bike, bus)
- Users have preferences (price, walking distance, crowd, time, weather...)

Take into account

- Users choose among different transport modes (e.g., metro, carsharing, bike, bus)
- Users have preferences (price, walking distance, crowd, time, weather...)
- Preferences are not fully known to the CS company

Assumption

Zones

Assumption

Drop-off fee + per-minute fee

Assumption

Alternative transport services

The problem

Given

- A target period (e.g., 14:00-15:00)

Decide

Maximize profits

The problem

Given

- A target period (e.g., 14:00-15:00)
- Current position of the vehicles

Decide

Maximize profits

The problem

Given

- A target period (e.g., 14:00-15:00)
- Current position of the vehicles
- Cumulative mobility demand between each pair of zones in the target period

Decide

Maximize profits

The problem

Given

- A target period (e.g., 14:00-15:00)
- Current position of the vehicles
- Cumulative mobility demand between each pair of zones in the target period
- Usage and relocation costs

Decide

Maximize profits

The problem

Given

- A target period (e.g., 14:00-15:00)
- Current position of the vehicles
- Cumulative mobility demand between each pair of zones in the target period
- Usage and relocation costs
- A model of customers preferences

Decide

Maximize profits

The problem

Given

- A target period (e.g., 14:00-15:00)
- Current position of the vehicles
- Cumulative mobility demand between each pair of zones in the target period
- Usage and relocation costs
- A model of customers preferences

Decide

- the drop-off fees for the target period $\left(\lambda_{i j 1}\right)$

Maximize profits

The problem

Given

- A target period (e.g., 14:00-15:00)
- Current position of the vehicles
- Cumulative mobility demand between each pair of zones in the target period
- Usage and relocation costs
- A model of customers preferences

Decide

- the drop-off fees for the target period $\left(\lambda_{i j l}\right)$
- the relocations to perform $\left(z_{v i}\right)$

Maximize profits

The model

$$
\begin{array}{lr}
\max -\sum_{v \in \mathcal{V}} \sum_{i \in \mathcal{I}} C_{v i}^{R} z_{v i}+Q(z, \lambda) & v \in \mathcal{V} \\
\sum_{i \in \mathcal{I}} z_{v i}=1 & i, j \in \mathcal{I} \\
\sum_{l \in \mathcal{L}} \lambda_{i j l}=1 & i \in \mathcal{I}, v \in \mathcal{V} \\
z_{v i} \in\{0,1\} & i, j \in \mathcal{I}, l \in \mathcal{L} .
\end{array}
$$

The model

$$
Q(z, \lambda):=\mathbb{E}_{\tilde{\xi}}[Q(z, \lambda, \xi)]
$$

$\tilde{\xi}$ models the uncertain preferences of the customers

Customers response

Each customer has unique preferences

$$
F_{k v}\left(p_{v}, \pi_{v i j}^{1}, \ldots, \pi_{v i j}^{N}\right)+\tilde{\xi}_{k v}
$$

Customers response

Each customer has unique preferences

$$
\begin{gathered}
F_{k v}\left(p_{v}, \pi_{v i j}^{1}, \ldots, \pi_{v i j}^{N}\right)+\tilde{\xi}_{k v} \\
\tilde{\xi}=\left(\xi_{k v}\right)_{k \in \mathcal{K}, v \in \mathcal{V}}
\end{gathered}
$$

Customers response

Given a realization ξ of $\tilde{\xi}$ we know what customers prefer.

Customers response

Given a realization ξ of $\tilde{\xi}$ we know what customers prefer.
For each ξ realization (scenario) we can spot the set of customers $\mathcal{R}(\xi)$ which would use CS at some price level.

Second stage

- Each car is rented at most once

Second stage

- Each car is rented at most once
- Each customer gets at most one car

Second stage

- Each car is rented at most once
- Each customer gets at most one car
- A customer uses CS if the drop-off fee is low enough

Second stage

- Each car is rented at most once
- Each customer gets at most one car
- A customer uses CS if the drop-off fee is low enough
- First-come-first-served

Second stage

$$
\begin{align*}
& Q(z, \lambda, \xi)=\max \sum_{r \in \mathcal{R}(\xi)} \sum_{v \in \mathcal{V}} \sum_{I \in \mathcal{\mathcal { L } _ { r }}(\xi)} R_{v r \mid} y_{v r l} \\
& \sum_{v \in \mathcal{V}} \sum_{I \in \mathcal{L}_{r}(\xi)} y_{v r l} \leq 1 \\
& \sum_{r \in \mathcal{R}(\xi)} \sum_{r \in \mathcal{\mathcal { L } _ { r }}(\xi)} y_{v r l} \leq 1 \\
& \sum_{I \in \mathcal{\mathcal { L } _ { 1 }}(\xi)} y_{v, r_{1}, I}+\sum_{r_{2} \in \mathcal{R}_{r_{1}}(\xi)} \sum_{l \in \mathcal{L}_{r_{2}}(\xi)} y_{v, r_{2}, l} \leq z_{v, i\left(r_{1}\right)} \\
& y_{v, r_{1}, l_{1}}+\sum_{r_{2} \in \mathcal{R}_{r_{1}}(\xi)} \sum_{r_{2} \in \mathcal{L}_{r_{2}}(\xi)} y_{v, r_{2}, l_{2}}+\sum_{v_{1} \in \mathcal{V}_{: v_{1}} \neq v} y_{v_{1}, r_{1}, l_{1}} \\
& \geq \lambda_{i\left(r_{1}\right), j\left(r_{j}\right), l_{1}}+z_{v, i\left(r_{1}\right)}-1 \\
& \sum_{v \in \mathcal{V}} y_{v r l} \leq \lambda_{i(r), j(r), l} \\
& y_{v r l} \in\{0,1\} \\
& r_{1} \in \mathcal{R}(\xi), v \in \mathcal{V} \\
& r_{1} \in \mathcal{R}(\xi), v \in \mathcal{V}, l_{1} \in \mathcal{L}_{r_{1}}(\xi) \\
& r \in \mathcal{R}(\xi), I \in \mathcal{L}_{r}(\xi) \\
& r \in \mathcal{R}(\xi), v \in \mathcal{V}, I \in \mathcal{L}_{r}(\xi)
\end{align*}
$$

Benders decomposition

Two-Stage Stochastic Integer Program, with integers at both stages.

Benders decomposition's key ingredients:

- Fast exact algorithm for the second-stage sub-problems $\left(\mathcal{O}\left(\left|\mathcal{R}\left(\xi_{s}\right)\right| \times|\mathcal{V}|\right)\right)$

Benders decomposition

Two-Stage Stochastic Integer Program, with integers at both stages.

Benders decomposition's key ingredients:

- Fast exact algorithm for the second-stage sub-problems $\left(\mathcal{O}\left(\left|\mathcal{R}\left(\xi_{s}\right)\right| \times|\mathcal{V}|\right)\right)$
- Complete recourse

Benders decomposition

Two-Stage Stochastic Integer Program, with integers at both stages.

Benders decomposition's key ingredients:

- Fast exact algorithm for the second-stage sub-problems $\left(\mathcal{O}\left(\left|\mathcal{R}\left(\xi_{s}\right)\right| \times|\mathcal{V}|\right)\right)$
- Complete recourse
- Ad-hoc optimality cuts

Benders decomposition

Two-Stage Stochastic Integer Program, with integers at both stages.

Benders decomposition's key ingredients:

- Fast exact algorithm for the second-stage sub-problems $\left(\mathcal{O}\left(\left|\mathcal{R}\left(\xi_{s}\right)\right| \times|\mathcal{V}|\right)\right)$
- Complete recourse
- Ad-hoc optimality cuts
- Multi-cut

Benders decomposition

Two-Stage Stochastic Integer Program, with integers at both stages.

Benders decomposition's key ingredients:

- Fast exact algorithm for the second-stage sub-problems $\left(\mathcal{O}\left(\left|\mathcal{R}\left(\xi_{s}\right)\right| \times|\mathcal{V}|\right)\right)$
- Complete recourse
- Ad-hoc optimality cuts
- Multi-cut
- Something to help optimality cuts

Benders decomposition

Master problem

$$
\begin{array}{lr}
\max -\sum_{v \in \mathcal{V}} \sum_{i \in \mathcal{I}} C_{v i}^{R} z_{v i}+\sum_{s \in \mathcal{S}} \pi_{s} \phi_{s} & \\
\sum_{i \in \mathcal{I}} z_{v i s}=1 & v \in \mathcal{V} \\
\sum_{I \in \mathcal{L}} \lambda_{i j l}=1 & i \in \mathcal{I}, j \in \mathcal{J} \\
z_{v i} \in\{0,1\} & i \in \mathcal{I}, v \in \mathcal{V} \\
\lambda_{i j l} \in\{0,1\} & i \in \mathcal{I}, j \in \mathcal{I}, l \in \mathcal{L} \\
\phi_{s} \text { free } & s \in \mathcal{S} .
\end{array}
$$

Benders decomposition

Proposition

Let $\left(z^{t}, \lambda^{t}\right)$ be the t-th feasible solution to MP, and $Q\left(z, \lambda, \xi_{s}\right)$ its second-stage value for scenario s. The set of cuts

$$
\begin{aligned}
\phi_{s} \leq & \left(Q\left(z, \lambda, \xi_{s}\right)-U_{s}\right)\left(\sum_{(v, i) \in \mathcal{Z}_{t}^{+}} z_{v i}\right. \\
& \left.-\sum_{(v, i) \in \mathcal{Z}_{t}^{-}} z_{v i}+\sum_{(i, j, l) \in \Lambda_{t}^{+}} \lambda_{i j l}-\sum_{(i, j, l) \in \Lambda_{t}^{-}} \lambda_{i j l}\right) \\
& +U_{s}-\left(Q\left(z, \lambda, \xi_{s}\right)-U_{s}\right)\left(\left|\mathcal{Z}_{t}^{+}\right|+\left|\Lambda_{t}^{+}\right|-1\right)
\end{aligned}
$$

defined for all $\left(z^{t}, \lambda^{t}\right)$ feasible to MP is a valid set of optimality cuts.

Proof.

Benders decomposition

Benders decomposition

4ロ〉4句〉4 三〉4 三•

Benders decomposition

Computationally catastrofic!

Benders decomposition

Computationally catastrofic!

LP relaxation cuts made it work

Benders decomposition

Computationally catastrofic!

LP relaxation cuts made it work

Plus some simmetry breaking

Results

				CPLEX		L-Shaped			
$\|\mathcal{V}\|$	$\|\mathcal{K}\|$	$\alpha^{F R O M}$	$\alpha^{\text {TO }}$	gap	t	gap	gapR	gap50	t
50	200	0.2	0.2	0.0014	297.99	0.4747	21.5553	0.4747	1801.00
50	400	0.2	0.2	0.4151	1804.09	6.5981	59.3308	8.9622	1800.13
50	600	0.2	0.2	-	-	13.6751	52.5981	18.9363	1800.03
100	200	0.2	0.2	0.0000	221.91	0.0000	8.9488	-	16.47
100	400	0.2	0.2	-	-	0.4829	26.1941	0.8372	1801.67
100	600	0.2	0.2	-	-	9.2186	40.2920	9.2848	1805.22
200	400	0.2	0.2	-	-	0.0000	9.9094	-229.96	
200	600	0.2	0.2	-	-	0.0571	14.7626	0.0579	1801.39
50	200	0.2	0.8	0.0067	381.59	0.5159	20.9177	0.5159	1800.11
50	400	0.2	0.8	0.3913	1800.30	3.5957	43.2969	4.3436	1800.03
50	600	0.2	0.8	-	-	14.1098	63.4863	16.2944	1802.22
100	200	0.2	0.8	0.0000	199.66	0.1800	10.6250	0.1800	1800.13
100	400	0.2	0.8	-	-	0.1798	22.5452	0.3266	1800.02
100	600	0.2	0.8	-	-	9.1325	36.2728	9.8433	1808.65
200	400	0.2	0.8	-	-	0.0000	59.2478	-	165.06
200	600	0.2	0.8	-	-	0.1327	15.6153	0.4830	1800.02

Solutions

Table: Comparison of the solutions with and without dynamic pricing on the instances with 50 vehicles and 600 customers.

Distribution	Metric	With dynamic pricing	Without dynamic pricing
D1	Expected Profit [\%]	100	81.78
	\% of vehicles Relocated	26.0	10.0
	Min $\|\mathcal{R}(\xi)\|$	167	80
	Max $\|\mathcal{R}(\xi)\|$	195	107
	Expected \% Requests satisfied	24	42
D2	Expected Profit [\%]	100	66.06
	\% of vehicles Relocated	22.0	2.0
	Min $\|\mathcal{R}(\xi)\|$	168	81
	Max $\|\mathcal{R}(\xi)\|$	187	105
	Expected \% Requests satisfied	26	49
D3	Expected Profit [\%]	100	65.05
	\% of vehicles Relocated	18.0	6.0
	Min $\|\mathcal{R}(\xi)\|$	167	80
	Max $\|\mathcal{R}(\xi)\|$	195	107
	Expected $\%$ Requests satisfied	26	49
D4	Expected Profit [\%]	100	66.36
	\%of vehicles Relocated	10.0	0.0
	Min $\|\mathcal{R}(\xi)\|$	168	81
	Max $\|\mathcal{R}(\xi)\|$	187	105
	Expected $\%$ Requests satisfied	26	48

Take-aways

- A possible way of setting prices in CS services
- Complex integer stochastic program, but Benders decomposition went a long way
- Increases profits for the company
- Currently trying heuristics (with some help..)

