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Abstract

This article addresses a relocation and recharging problem faced by modern car-
sharing operators who manage a fleet of electric vehicles. As customers utilize the
fleet, batteries are depleted and vehicles are possibly left in low-demand locations.
Consequently, carsharing operators need to arrange the charging of depleted bat-
teries and the relocation of poorly positioned vehicles in order to better meet the
demand of the customers. Most of these activities require the intervention of dedi-
cated staff. This article provides a framework for planning recharging and relocation
activities based on periodically routing and scheduling a number of dedicated staff
as a result of updated system information. The periodic planning problem is for-
mulated as a Mixed Integer Linear Program and solved in a rolling-horizon fashion.
For the solution of the problem a fast Adaptive Large Neighborhood Search heuris-
tic is proposed. Tests based on data for the city of Oslo show that the heuristic
can deliver, in reasonable computational time, high quality solutions for instances
compatible with real-life planning problems.

Keywords: Carsharing, Urban mobility, Adaptive Large Neighborhood Search, Dy-
namic routing.

1 Introduction
Carsharing systems, which have existed in various forms for several decades, have recently
gained traction due to the enabling power of internet technology and the increased aware-
ness regarding environmental issues. A carsharing system is owned and maintained by a
Carsharing Organization (CSO). First-time users typically sign up through a website or a
mobile application to get access to the system, possibly paying a subscription fee. Users
already in the system can then locate, possibly reserve, and unlock the available cars
typically via a mobile application, and pay based on the time of usage (e.g., a per-minute
fee), sometimes in addition to a drop-off fee based on the zone of the city where the car is

1



returned (Shaheen et al. [2015], Hansen and Pantuso [2018]). Modern carsharing services
mainly exist in two forms. Station-based systems restrict users to pick up and return cars
at available stations. These can be further distinguished into one- and two-way systems,
which, respectively allow and forbid the user to return the car to a station different from
the pick up station. Free-floating systems do not necessarily include stations and cars
can be picked up and returned at any common parking spot within the specified business
area.

Modern carsharing systems give rise to new and unexplored planning problems which
are attracting the interest of the operations research community. At different strategic
levels, CSOs need to decide, for example, fleet size (George and Xia [2011], Cepolina and
Farina [2012]), station locations (Weikl and Bogenberger [2012]), trip-booking scheme
(Correia et al. [2014], Kaspi et al. [2014]), and pricing scheme (Hansen and Pantuso
[2018], Pantuso [2020]). At the operational level, CSOs deal with recharging/refuelling,
maintenance and, particularly in one-way systems, with relocating vehicles in order to
better meet transportation demand. In fact, asymmetric patterns in transportation de-
mand cause cars to remain parked in low-demand zones with consequent under-supply
in high-demand zones. In some cases, this phenomenon is contrasted with pricing-based
initiatives. As an example, in the city of Milan, the CSO Share-Now adopts a pricing
scheme which charges users for parking in unfavorable zones of the city, Share-Now [2021a].
However, staff-based relocation of cars is often unavoidable. This is particularly true for
free-floating systems operating a fleet of (at least some) electric vehicles (example of these
are Share-Now in Copenhagen, Share-Now [2021b] and Vy Bybil in Oslo, Vy [2021]). In
fact, since users are not required to return cars at charging stations, the CSO’s staff often
needs to ensure recharging.

In this paper we introduce the Dynamic Electric Carsharing Relocation Problem (DE-
CRP) for one-way, either free-floating or station-based, systems. A solution to the problem
consists of: i) an assignment of cars with low battery level to charging stations, ii) an
assignment of cars in need for relocation to under-supplied zones/stations, iii) an assign-
ment of car-moves to employees, and iv) routes and schedules for the service employees.
The problem is dynamic in the sense that new information about the distribution of cars
and their state of charge is received continuously. In addition, transportation demand
changes in a stochastic way during the business hours or planning horizon. The overall
goal of the problem is to maximize profits by providing a suitable distribution of vehicles.
This is consistent with the business objective of private CSOs.

The contributions of this paper can be stated as follows.

– First, we formalize the DE-CRP and offer a rolling-horizon solution procedure, based
on periodic on-line re-optimization of charging and relocation activities as the land-
scape of the problem changes during the planning horizon.

– Second, we provide a Mixed Integer Programming (MIP) formulation for the peri-
odic re-optimization problem. Compared with the available literature, the models
takes a different approach with respect to modeling relocation tasks. Particularly,
it is based on a-priori generated possible car-moves, which are then assigned to
available employees. Preliminary results from Hellem et al. [2018] show that this
formulation is superior to a traditional arc-flow formulation. The re-optimization
problem can be seen as a subproblem of the DE-CRP and is referred to as the
Electric Carsharing Relocation Problem (E-CRP).
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– Third, we provide an efficient solution method based on an Adaptive Large Neigh-
borhood Search (ALNS) for the re-optimization problem which is able to solve large-
scale instances of the problem within reasonable computational time.

– Finally, we test the proposed solution method in a simulation framework based on
real-time traffic data from Oslo, Norway.

The methodology can adapt to both station-based and free-floating systems. In the
latter case a discretization of the business area into zones is necessary, as exemplified
in our case study. The remainder of this paper is organized as follows. In Section 2,
the DE-CRP is discussed in conjunction with the related literature. In Section 3, the
DE-CRP is formally introduced. A solution method for the DE-CRP, based on periodic
re-optimization of relocation activities is presented in Section 4. Section 5 introduces the
Electric Carsharing Relocation Problem (E-CRP) and the ALNS heuristic for solving it.
The simulation used to test the solution method as well as the test instances are described
in Section 6. A computational study in presented in Section 7 and, finally, conclusions
are drawn in Section 8. The appendix contains a Mixed Integer Linear Programming
formulation of the E-CRP.

2 Literature overview
A variety of strategies have been proposed to address the relocation of vehicles. The great
majority of the studies focus on station-based systems. Barth and Todd [1999] examine a
station-based electric carsharing system through a discrete-event simulation model which
includes a number of heuristic algorithms to determine when and how a relocation must
happen (i.e., how many vehicles to move from a station to another). Kek et al. [2009] also
consider staff-based relocations in a simulation model. In addition, the authors propose
an optimization model which allocates staff to relocation activities. The scope of the
optimization model is to minimize the total relocation cost. Jorge et al. [2014] propose an
optimization model to determine the number of cars to relocate between pairs of stations.
The model is also tested in a simulation framework. Boyacı et al. [2015] take into account
staff-based relocations in an optimization model that determines the optimal fleet size,
number of stations, and their locations in one-way station- and reservation-based car-
sharing systems. Boyacı et al. [2017] propose a multi-objective MIP to determine the
optimal temporal and spatial distribution of vehicles in stations and also the personnel
responsible for the relocation. Nair and Miller-Hooks [2011] propose a stochastic MIP
involving joint chance constraints which generates least-cost relocation plans such that a
proportion of all short-term demand is met. Brandstätter et al. [2016] provide a broader
overview of the methods available for station-based systems, such as the problem of finding
optimal locations and sizes for charging stations as studied in Brandstätter et al. [2020].

A number of studies add a further level of planning detail, and consider also the routing
of the relocation staff. Bruglieri et al. [2014] consider the relocation problem for a fleet of
electric vehicles in one-way station-based systems. The authors propose the use of staff
traveling by means of folding bicycles that can be loaded into the trunk of the electric
vehicle to relocate. The authors refer to this problem as the Electric Vehicle Relocation
Problem (E-VReP). A solution to the E-VReP provides the routing and scheduling of
each worker employed. Bruglieri et al. [2017] expand the E-VReP by introducing the
costs related to using repositioning staff and the revenue associated with each relocation
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request satisfied, and thus seek to maximize the total profit. Recently, Bruglieri et al.
[2019] propose an Adaptive Large Neighborhood Search heuristic to solve large instances
of the problem. Gambella et al. [2018] present two models for the relocation problem,
including staff routing, one during operating hours maximizing the profit of relocating
cars, and one for non-operating hours maximizing the level of the most depleted battery.
Ait-Ouahmed et al. [2018] also consider the joint routing of staff and vehicles, and propose
a Tabu Search heuristic that first considers only relocations of cars to meet the demand,
and then assigns service employees to the relocations found in the first phase. Finally,
Wang et al. [2019] propose a method to determine the number of vehicles needed at
each station, the relocations to perform accordingly, and how relocations are allocated to
the available staff. The determination of the necessary vehicle balance at each charging
station is based on historical data and on the computation of a threshold which ensures
that the probability of the station running out of cars in a give time horizon is sufficiently
low. Following, an optimization method determines which relocations to perform and how
these are allocated to the available staff.

The literature concerning free-floating systems is more sparse. Kortum and Machemehl
[2012] propose a procedure for the relocation of cars. After an initial allocation, vehicles
are moved from one zone to another according to relative levels of demand. The procedure
stops when there is no unmet demand in the entire system or when the vehicles end in
a zone with no demand to carry it into another zone. Weikl and Bogenberger [2015]
introduce a relocation model for systems with both conventional and electric vehicles. In
case of imbalances, the model is able to recommend profit-maximizing car relocations.
Relocations are combined with the unplugging and recharging of electric vehicles and the
refueling of conventional vehicles. Both Weikl and Bogenberger [2015] and Kortum and
Machemehl [2012] partition the operating area into zones, which basically transforms the
system into a station-based system.

Our work shares similarities with available studies. For example, similarly to Bruglieri
et al. [2014, 2017, 2019], we assume that service employees travel by folding bikes or pub-
lic transport in-between relocating cars and, similarly to Weikl and Bogenberger [2015],
we combine recharging and maintenance activities with relocation. In addition, in this
paper we advance the state-of-the-art by means of the following additions. First, we si-
multaneously address both the routing of the employees (as in, e.g., Bruglieri et al. [2014],
Gambella et al. [2018], Ait-Ouahmed et al. [2018], Wang et al. [2019]) and joint relocation
and recharging decisions (as in Weikl and Bogenberger [2015]). The state-of-charge of
the vehicles is also taken into account in Wang et al. [2019]. The authors ensure that
the relocation moves are feasible with respect to the state-of-charge. However, the au-
thors do not address recharging decisions. In addition, the method we propose is tailored
for free-floating systems, and as such does not require the detailed information at the
station-level used in the method proposed by Wang et al. [2019], but rather information
at the level of geographical zones. Second, we propose an alternative formulation based on
a-priori defined car-moves. In contrast, in Bruglieri et al. [2019] the problem is based on
pick-up and delivery requests, and in Ait-Ouahmed et al. [2018] solutions are represented
using customer demands and the corresponding relocations needed to fulfill them. The
formulation based on car-moves can potentially reduce the search space and offer better
scalability. Finally, we propose a framework for explicitly addressing a dynamic problem
where new information is received continuously through the planning horizon, providing
a closer representation of the actual decision process of real-world carsharing operators.

The DE-CRP shares characteristics with Dynamic Vehicle Routing Problems (DVRP).
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In the definition of Psaraftis et al. [2016] a VRP is dynamic if the input of the problem
is received and updated concurrently with the determination of the route, thus showing
an evident parallel with the DE-CRP. The interest for DVRPs has increased in the re-
cent years, with 51 out of the total 117 published after 2011 (Psaraftis et al. [2016]).
Particularly, Ulmer et al. [2017] present a Markov Decision Process (MDP) framework
for DVRPs which generalizes the previous work of Thomas [2007] and Secomandi and
Margot [2009]. They show how a route-based MDP can be used to model a DVRP while
at the same time being closely coupled with solution methods that optimize iteratively.
However, MDP models suffer excessively the curse of dimensionality, as the state-space
tends to become too large for real-life-size instances. In fact, most solution methods solve
the DVRP using periodic replanning in a rolling-horizon framework. In this case, a static
vehicle routing problem (VRP) is used for periodically replanning over portions of the
planning horizon as input data is updated. As an example, Chen and Xu [2006] solve a
DVRP with hard time windows using fixed intervals between consecutive replanning. In
Kilby et al. [1998] replanning is triggered when new demand arrives. Yang et al. [2002]
show how the framework can be used in combination with a variety of solution methods
for the underlying static VRP, including both heuristics and exact optimization methods.
In this paper we also propose a solution method based on periodic replanning for portions
of the planning horizon.

3 Problem Description
In the Dynamic Electric Carsharing Relocation Problem (DE-CRP), we consider a CSO
managing a fleet of electric cars in a car-sharing service over the entire day (24 hours).
The positions and charging states of the cars change throughout the day as a result of
the users’ driving activities. The demand of shared cars in the different areas of the
city also varies over the day. An area of the city may correspond with a well-defined
geographical zone in free-floating systems (as assumed in the rest of this article) or with
a specific station in station-based systems. To ensure continuity of the service and a
profitable distribution of cars, the CSO needs to charge cars with too low battery levels,
perform necessary maintenance, and relocate cars in order to better meet demand. For
these activities, the CSO uses dedicated service employees.

The service employees use public transport or folding bikes that can fit in the trunk of a
car to reach cars subject to relocation. Cars subject to relocation are those in areas with an
excess of available cars, or those in need of charging. Upon reaching a car, the employee
performs necessary small maintenance tasks and then moves the car, corresponding to
driving it to a charging station if its battery level is below a given threshold, or relocating
it to a deficit area that has fewer cars than needed at the given time of the day. Once the
car has been moved, either to a charging station and/or to a deficit area, the employee
travels to another car in need of intervention.

The decision process concerns the service employees. When an employee arrives at a
car, a decision is made about where it should be relocated, and when the car arrives at
its destination, the decision is to which car the employee should go to next.

Therefore, we define the DE-CRP as the problem of determining: i) the assignment of
cars in need of charging to available charging stations, ii) the assignment of cars in areas
with an excess of available cars to deficit areas, iii) the assignment of employees to car-
moves, that is the relocation of cars from their current position to their assigned charging
stations or to deficit areas, and iv) routes and schedules for the activities of the service
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employees. A route consists of relocations of cars and travels between relocation activities.
A relocation plan, consisting of the above mentioned decisions, is required for the entire
day, and activities are performed as the system is perturbed by users’ activities. The
scope of the CSO is that of performing these activities such that profits are maximized,
where revenue consists of the remuneration for rentals, and costs include the cost of the
movements with rental cars, tolls and wear. It should be emphasized that in contrast to
most other vehicle routing and pickup and delivery problems, the DE-CRP also includes
determining where to relocate the different cars.

4 Solution method for the DE-CRP
In practice, CSOs face the problem by periodically planning relocation and recharging
activities throughout the day with updated information and demand outlook as the system
is perturbed by user activities. Therefore, we adopt this organization of work and set to
solve the DE-CRP by periodically re-optimizing relocation and recharging activities at a
finite number of time points referred to as decision stages.

Let the system state at a given decision stage describe the current position and battery
level of each car not currently in use, the position of each service employee, and the travel
times for rental cars, public transport and folding bikes. At each decision stage, decisions
regarding a portion of the whole planning horizon, referred to as planning period, are
made. Such decisions are based on the current system state and on demand forecast
for the planning period as well as a period of time after the planning period referred to
as look-ahead period. Particularly, at each decision stage, a static and open subproblem
is solved. We refer to this problem as the Electric Carsharing Relocation Problem (E-
CRP). The problem is static since we assume that all information is known at the time of
planning and it is open since there is no defined depot where the service employees must
start and end their routes.

Given a solution to the E-CRP, relocations and charging activities for the first part
of the planning period are implemented accordingly, while activities further ahead in
the future are planned at a future decision stage (they are only included to avoid myopic
solutions for the here-and-now decisions in the first part of the planning period). It should
be emphasized that the look-ahead period is only used for forecasting the ideal state at
the end of the planning period. The resulting rolling-horizon framework is illustrated in
Figure 1.

In the remainder of the article we assume a free-floating system. As in Weikl and
Bogenberger [2015] and Folkestad et al. [2020], the business area of the CSO is divided
into zones. A parking zone is a geographical area where rental cars can be parked and
picked up by the customers. Multiple cars can be located within a parking zone. The
position of each parked car is tracked and used when calculating the driving time to the
charging stations and the centre of the deficit zones.

A parking zone is characterized by an ideal state which indicates how many sufficiently
charged cars should be located in the zone at the end of the planning period to satisfy
future demand. Since the replanning of relocation and recharging activities is done fre-
quently, the uncertainty in demand is not explicitly handled in the model but instead
reflected in the ideal state.

Each charging station has a finite capacity. Only cars currently in need of charging
can be parked at a charging station. A charging station is located inside a parking zone.
However, they are considered separated entities, as shown in Figure 2.
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Figure 1: Solution of the DE-CRP by period re-optimization

Parking zone

Charging station

Figure 2: Location of a charging station. The charging station is separated
from its associated parking zone

We make the following assumptions. There are always available parking spaces in
parking zones. When cars are fully charged, they are automatically made available to
customers in the surrounding parking zone, unassisted by service employees. This corre-
sponds to mark the car as available in the booking system when it is fully charged, and
it allows customers to pick up the car directly from charging station (with the necessary
information on how to unplug it). Nevertheless, the charging spot will remain occupied
in future reoptimizations, until the car has been picked up. We also assume that rental
cars with remaining battery level below a set threshold are unavailable for customers until
they are fully charged again. Similarly, cars which are subject to repositioning are not
available to customers. It is only possible to book a rental car for use at the current time,
i.e. booking future usage is not possible. A service employee is assumed to use the fastest
means of transportation available, either folding bike or public transportation, when trav-
eling between car relocations. We assume that the time used to relocate cars to parking
nodes includes the additional time required to find an available parking spot. Similarly,
the time to relocate cars to charging stations includes additional time required to start
the charging process. Finally, cars currently charging are assumed to be unavailable also
for service employees.

We define the E-CRP as the problem of determining, for a portion of the planning
horizon referred to as the planning period (see Figure 1): i) the assignment of cars in need
of charging to available charging stations, ii) the assignment of cars in excess zones to
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deficit zones, iii) the assignment of employees to car relocation tasks, and vi) routes and
schedules for the relocation activities of the service employees. When an E-CRP is solved,
the system state is known and a demand forecast for the planning period and look-ahead
period (see Figure 1) is provided. A Mixed Integer Linear Formulation of the E-CRP is
presented in Appendix A.

5 An Adaptive Large Neighborhood Search Heuristic
for the E-CRP

Preliminary testing of the model (summarized in Appendix A) using Xpress 29.01.10 run
on a 3.4GHz Intel E5 processor showed that instances with more than ten zones and ten
cars could not be solved in a reasonable time, see Figure 3. We can therefore conclude
that solving real-life instances of problem (4) in reasonable time using only a commercial
solver is in practice impossible. Instead, we propose an Adaptive Large Neighborhood
Search (ALNS) heuristic, as introduced by Ropke and Pisinger [2006], which has proven
to be efficient for solving large-scale vehicle routing problems. Similarly to Ropke and
Pisinger [2006], Shaw removal and k-regret are utilized for the Large Neighborhood Search
(LNS), while Tabu Search (TS) is adopted as the local search.
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Figure 3: Solution time, blue dashed line, and gap, orange solid line, for the
preliminary testing of solving problem (4) using Xpress 29.01.10
run on a 3.4GHz Intel E5 processor. The number of cars in the
system is approximately the same as the number of zones. A time
limit of 7,200 s has been used.

The heuristic is divided into two recurring processes, TS and LNS. The TS performs
a local search until Ides iterations without improvements have been performed. Then,
the LNS destroys and repairs the solution provided by TS, guiding the search into a new
neighborhood of the search space in which TS is reactivated. The algorithm terminates
after IR LNS iterations without improvement or Tmax seconds (when the first of the two
conditions is met). The pseudo-code of the ALNS heuristic is provided in Algorithm 1.
After the construction of an initial solution, TS performs a local search in a neighborhood
M provided by the function FindNeighborhood. The neighborhood consists of all the
solutions which can be obtained by altering the current solution using one or several of
the available local search operators (LSOs). The heuristic chooses the best solution in the
given neighborhood. If the solution improves the current best solution, it is updated. Here
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f(s) denotes the objective function value of solution s. Otherwise, after Ides iterations
without improvements, the search restarts in another neighborhood by applying LNS, and
the weights of the heuristic (the parameters that calibrate its behavior, and which are
discussed later) are updated.

Algorithm 1: Adaptive Large Neighborhood Search Heuristic
Input: R Set of candidate car-moves
Output: Ordered list of car-moves for each service employee k ∈ K

1 Solution s = ConstructionHeuristic(R)
2 Best solution sbest = s
3 while stopping criteria not met do
4 M = FindNeighborhood(s)
5 s ∈ argmaxs∈M f(s)
6 if f(s) > f(sbest) then
7 sbest = s
8 else if non-improving TS iterations ≥ Ides then
9 s = LargeNeighborhoodSearch(s)

10 end
11 UpdateWeights()
12 end

5.1 Solution Representation

The key entity of the solution representation is a car-move, which define a feasible relo-
cation of a car from its origin to a given destination. This means to relocate a sufficiently
charged car from an excess zone to a deficit zone, a parking-move, or a car in need of charg-
ing to a charging station, a charging-move. Let R be the set of all feasible car-moves.
The set of car-moves is created from the current state of the carsharing system.

A solution s is represented by two lists, γ and β. The first list, γ, contains the used
car-moves and is divided into one list for each service employee. Let K denote the set
of service employees and γk the ordered list of car-moves performed by service employee
k. The second list, β, contains the unused car-moves, not present in γ. At most one
car-move for each car may be present in γ. The route of service employee k is derived by
iteratively visiting the origin and destination of each car-move r ∈ γk. Figure 4 shows an
example of this. Two service employees relocate five cars. Employee 1 relocates cars 1, 2,
and 3 with destinations 2, 3, and 5, respectively, while employee 2 relocates cars 4 and 5
with destinations 2 and 5.

1
: r2

1 → r3
2 → r5

3

2
: r2

4 → r5
5

γ1 :

γ2 : Unused move

s

r3
1r2

2 r3
4β :

Figure 4: Solution representation. γk is the set of car-moves, in order, for
service employee k. β is the set of unused car-moves. ric represent
moving car c to destination i.
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5.2 Feasibility and Objective Function

The ALNS allows infeasible solutions during the search to widen the search space. Two
types of violations are allowed. First, γk may contain more car-moves than service em-
ployee k can handle within the planning period T . In this case, a solution is punished at
a cost CL for each car-move that is handled outside the planning period. The ordered
list of car-moves performed by employee k, γk, can easily be made feasible by moving the
car-moves outside the planning period from γk to β. Second, the capacity of charging
stations may be violated. Such violation is punished at a cost CI for each car in excess
of capacity.

The objective value is calculated by means of Equation (1). The number of parking-
moves that are rewarded is denoted τP , and the reward per move is CD. The variable φ
is the number of charging-moves performed within the planning period, and CCh is the
reward per move. The total time used by service employee k is denoted tk, and idle time
and overtime is punished by CT and CET in the third and fourth terms, respectively.
The idle time cost is introduced to address that we deal with only a portion of the entire
planning horizon in the E-CRP. Idle time costs encourage employees to complete their
tasks as soon as possible, and thus leave the company in a better position to address the
next re-optimization. The variable µr is 1 if car-move r is performed, and 0 otherwise,
and CRTH

r is the cost of wear, tolls and electricity for car-move r where CR is the cost
per time unit and TH

r the time needed to perform the car-move. Note that (F )+ is short
for max(F, 0).

The terms on the second line of (1) are penalties for infeasibility and rewards for early
charging. The variable τC denotes the total capacity violation at all charging stations,
while the variable µE

r is 1 if car-move r is performed after the planning period, and 0
otherwise. To test an early charging strategy, we also include a revenue for charging
early, where tr is the time charging-move r is performed and tr = T if it is not performed.
CChE is the reward per unit of time and RCh is the set of charging-moves .

Thus the heuristic prioritizes early charging moves as these may be beneficial in a
dynamic setting to reduce the number of cars that become unavailable later. Notice that
the last term of (1) is not included in the objective function of model (4).

f(s) = CDτP + CChφ−
∑
k∈K

CT (T − tk)+ −
∑
k∈K

CET (tk − T )+ −
∑
r∈R

CRTH
r µr

− CIτC −
∑
r∈R

CLµE
r +

∑
r∈RCh

CChE(T − tr)+ (1)

5.3 Construction of the Initial Solution

An initial solution is created in a greedy fashion. Initially, β contains all car-moves and
γ is empty. The heuristic iterates through the service employees, thus the employees are
handled one at a time. For each employee, k ∈ K, the best insertion (in terms of objective
value) of a car-move at the end of γk is performed, given that the corresponding car c
does not yet have a car-move in γ. The remaining car-moves for car c remain in β. Tasks
are added to one employee until no more task improving the objective function are found.
The heuristic then continues in the same way with the next employee, each time adding
a move at the end of a given γk.
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5.4 Local Neighborhood Search

In each interation, the Tabu Search generates a local neighborhood M, using a chosen
LSO. The LSOs that are available are called Intra, Inter, Inter-2, and Swap. The Intra
LSO moves a car-move within the list of car-moves for one given service employee, while
the Inter LSO moves a car-move from one service employee to another. The Inter-2 LSO
moves two consecutive car-moves from one service employee to another, while the Swap
LSO swaps two car-moves between two service employees. We also use similar LSOs where
car-moves to/from β (i.e. the list of unused car-moves) are moved from/to γk (i.e. a route
for a given service employee), and a car-move from γk is replaced with a car-move from β
for the same/different car.

Different ways of generating the neighborhood M were tested and preliminary testing
showed that a Random Weighted Enumeration method gave the best results. Here, the
TS first selects one LSO in a roulette wheel fashion, based on adaptive weights (described
in Section 5.6). Second, a neighborhood with Mmax solutions is generated randomly
with the selected LSO. We use a best improvement strategy when searching in M for
an improving solution, meaning that a most improving neighbor is selected (note that
there might be multiple ones). If there does not exist any improving neighbor solutions,
a neighbor that worsens the solution the least is chosen. The selected LSO is added to
the tabu list. The tabu list is adaptive, limited by an upper and lower threshold. If the
last IB iterations have been unsuccessful in finding a local improvement, the length of
the tabu list is doubled. Likewise, if at least one of the previous IS iterations has been
successful, the length of the tabu list is halved.

5.5 Large Neighborhood Search

The large neighborhood search consists of combinations of destroy and repair heuristics.
The destroy heuristics remove car-moves from γ. Subsequently, repair heuristics insert
car-moves into γ. The degree in which a current solution is destroyed and repaired is
denoted Γ, Γ = 0.1 means that 10 % of the car-moves in γ are removed. The destroy and
repair heuristics are chosen in a roulette wheel fashion, individually, based on adaptive
weights.

The destroy heuristics are Random Removal, Worst Removal and Shaw Removal. Ran-
dom Removal sequentially removes car-moves randomly and uniformly from γ, to diversify
the search. Worst Removal greedily removes the car-moves causing the largest decrease
in the objective function value from the current solution γ. The intention is that more
beneficial car-moves can replace these car-moves. Shaw removal was first introduced by
Shaw [1997]. The technique increases the number of unique objects in the solution, defin-
ing a relatedness measure R(r1, r2) between car-moves r1 and r2 to identify which objects
to remove. Equation (2) shows our definition of R(r1, r2). Here, function ∆(n,m) gives
the geographical distance between nodes n and m, while function c(r) returns one if the
destination of car-move r is a charging node. The functions o(r) and d(r) give the origin
and destination of car-move r, respectively.

R(r1, r2) =ω1∆(o(r1), o(r2)) + ω2∆(d(r1), d(r2)) + ω3|c(r1)− c(r2)|
+ ω4|TH

r1
− TH

r2
|+ ω5|T S

r1
− T S

r2
| (2)

The first and second terms consider the relatedness between car-moves’ origin and des-
tination, respectively. The third term checks if both car-moves are charging-moves or
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parking-moves, while the two final terms compare handling time and start time, respec-
tively. The parameters ω1, . . . , ω5 weight the importance of each of the five measures. The
lower the values of R(r1, r2), the more related the two car-moves are. Initially, a random
car-move is chosen from γ and inserted into a list of removed car-moves. While keeping
track of the car-moves that are already removed, a random car-move r1 from this list is
chosen. The car-move in γ most similar to r1 according to Equation (2) is then removed
and placed in the list of removed car-moves. This process repeats until a proportion Γ of
the car-moves in γ is removed.

The repair heuristics are Greedy Insertion and Regret Insertion. Greedy Insertion
greedily inserts car-moves yielding the greatest improvement to the objective function
value. The Regret Insertion is similar to the k-Regret used in Ropke and Pisinger [2006].
The heuristic considers the alternative costs of inserting a car-move into γ by comparing
the objective function value of the best insertion with the k best insertions, favouring the
car-move with the largest difference. We have used both the 2-Regret and the 3-Regret
Insertions heuristics.

5.6 Adaptive Weights Adjustments

Adaptive weights guide both the TS and LNS. Each LSO q in the TS, as well as the
destroy and repair heuristic in the LNS, has a weight wq associated with it, which is
updated based on its performance once in every segment of iterations, similar to Ropke
and Pisinger [2006]. A segment for the LSO used in the TS consists of IW consecutive
iterations. Similarly, a segment for the destroy and repair heuristics used in the LNS
consists of minimum Ides iterations.

Equation (3) shows how the weights wq for all LSOs are updated. θq is the number of
times LSO q have been used in the last segment, while α is a parameter that controls the
degree for which weights are updated. µq is the accumulated score in the current segment
based on its performance, similar to Ropke and Pisinger [2006]. In the special case where
µq and θq are both zero, the last term in Equation (3) is set to zero. The weights for the
LNS heuristics are updated in a similar way.

wq = wq(1− α) + α
µq

θq
(3)

6 Simulation, implementation and test instances
We test the performance of the periodic re-optimization framework for the DE-CRP
through simulation within a Rolling Horizon framework, which is described in Section
6.1. Section 6.2 presents the hardware and software used as well as the test instances
which are based on real traffic data from the city of Oslo.

6.1 Simulation environment

The simulation environment consists of three components, as illustrated in Figure 5. The
E-CRP Solver finds solutions to the E-CRPs using the ALNS heuristic. The E-CRP is
solved periodically given the current system state and demand forecast for the planning
period and look-ahead period. The Customer Demand component provides both predicted
and realized customer demand. Finally, the Simulation Model, which is the core of the
simulation environment, simulates the real-life system by keeping track of the evolution
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of the system state as demand materializes and service employees move around the city
to relocate and recharge the cars. Figure 5 illustrates the connection between the three
components. The Simulation Model feeds the current system state to the E-CRP Solver.
After the E-CRP Solver is done, it returns the routes for each service employee and the
relocations to the Simulation Model. The Simulation Model simulates both the travels of
the employees and the realized customer demand.

Customer Demand

Simulation Model

E-CRP Solver

Employee RoutesCurrent State

Demand Forecast

Actual Demand

Figure 5: The Rolling Horizon framework components. The Simulation
Model can be exchanged by a component tracking actual events
in a real world scenario.

Let parameters Tstart and Tend represent the start and end time of the planning horizon
of the DE-CRP, i.e the total time which we simulate over. Let Tincrement represent the
frequency of the decision stage, that is how often replanning is performed by calling the
E-CRP solver (i.e, the ALNS heuristic). Let T represent the length of the planning
period when solving the E-CRP, and let the look-ahead period have the same length as
the planning period. Let Tcharge specify the time (in minutes) it takes to fully charge a
rental car with an empty battery. Let Trange be the time a fully charged rental car can
drive. Let cars with battery level below the threshold ξupper be considered for recharging.
Customers can still rent cars with battery levels between ξupper and ξlower as the battery
level is sufficient for shorter trips. Rental cars with battery levels below ξlower are not
available to customers.

The pseudo-code for the Simulation Model is shown in Algorithm 2. The simulation
is run after every decision stage in the Rolling Horizon framework. Parameters such as
Tstart and Tincrement are fed to the Simulation Model specifying the start and the duration
of the period to simulate within each pair of decision stages. The Simulation Model
divides events into departures and arrivals. Departures consist of potential relocations
and customer requests, while arrivals include relocations and customer rentals that are
performed within the simulation time.

Lines 4-9 in Algorithm 2 show the simulation of tasks from Tstart until the end of the
simulation period, Tstart + Tincrement. The variable t is used to track the start time of
the previous event. Repeatedly, the Simulation Model finds the next event to happen
after the time t. This is a simple process of finding the earliest arrival or departure of
service employees and customers. Another event which may occur is that a rental car
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Algorithm 2: Simulation Model
Input: Tstart, Tincrement, CustomerArrivals, EmployeeArrivals, EmployeeRoutes
Output: System state

1 CustomerRequests = CustomerDemand.getActualDemand(Tstart, Tstart + Tincrement)
2 NextEvent = findNextEvent()
3 t← NextEvent.getTime()
4 while t < Tstart + Tincrement do
5 System state, CustomerArrivals, EmployeeArrivals = doEvent(NextEvent)
6 NextEvent← findNextEventAfter(t)
7 updateBatteryLevels(t, min(NextEvent.getTime(), Tstart + Tincrement))
8 t← NextEvent.getTime()
9 end

finishes charging. In this case, the fully charged car is moved from its charging node to
the associated parking node. Every time a new task is approved, the battery levels of the
cars are updated in line 7.

6.2 Test Instances and Implementation

We have generated test instances based on the geographical layout and on historical
traffic flow from the city of Oslo, including the city center and surrounding suburban
areas. The nodes are created using a grid structure, defining each node as a square of
size 500 × 300 meters. Each node represents a parking node and charging stations are
uniformly distributed in the operating area to the available parking nodes. A subset of
the 225 nodes in Figure 6 defines each test instance. Travel time data for car, bike and
public transport is collected from Google maps. The travel time between two nodes is
defined by the fastest travel option available, car for charging and parking moves and bike
or public transport for the transportation between car-moves. There are usually many
parking slots along the streets and many parking garages within the studied area (and in
particular for electric cars). We therefore believe that the assumption that there is always
available parking spaces is valid.

Three instance classes are created for the DE-CRP as shown in Table 1. Common
for all instance classes is that all charging stations have a capacity of six charging cars,
and that there are approximately three times as many cars as nodes. The simulation is
done over a 12-hour period starting at 6 AM in the morning. This entails solving several
different instances for each instance class, where each instance represents a snapshot of
the carsharing system at a given re-optimization time, as explained below. On average,
22.5 cars are requested in each node during the 12-hour period. This implies that there
are 6-7 times more customer requests than cars in the system.

Table 1: Instance classes and respective size and constant parameters used
for generating instances in the Rolling Horizon framework.

Test Instance Nodes Cars Service Employees Charging stations

D-20-65-5-3 20 65 5 3
D-50-170-12-6 50 170 12 6
D-120-380-24-12 120 380 24 12
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Figure 6: Nodes in the city of Oslo. Used as a basis for all test instances
created

For each instance in each instance class, ideal states are generated based on historical
traffic flow patterns in the city of Oslo, obtained from Google Maps and assuming that
customers renting cars are most likely to follow the traffic flow pattern. In the morning,
traffic flows from the suburban areas into the city center. These flows decrease towards
noon. From noon until 3-4 PM, the traffic from the city center to the suburban areas
gradually increases with a rush hour peak around 4 PM. These findings led to a simple
three-folded categorization of nodes: nodes with morning rush and lower demand in the
afternoon, nodes with a steady and moderate level of demand during the entire planning
horizon, and nodes with low morning demand but high afternoon demand. Consequently,
the demand in each node, corresponding to the ideal state, is assumed to follow a Poisson
process with arrival rate changing during the day. The arrival rate is indicated by param-
eter λs, s ∈ {H,M,L} as reported in Table 2. For instance, this means that nodes with
morning rush have a rate of λH in the morning which linearly decreases towards λL in the
afternoon. For simplicity, we have assumed that customers always travel at least for ten
minutes. To this, the travel time between the departure and destination node is added.
Since customers may have errands to run, each travel time of customers is adjusted by a
factor drawn from a uniform distribution U ∼ unif(1, 1.4).

Table 2: Expected number of cars requested for the three scenarios used in
the Poisson process.

Notation Number of cars demanded/hour

High demand λH 4

Medium demand λM 1

Low demand λL 0.3
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The parameters common to all test instances are shown in Table 3. At Tstart = 6
AM, it is assumed that the distribution of available rental cars is close to the ideal state.
The initial battery levels of the cars are uniformly distributed. The cost parameters
from Section 5 are inherently dependent on the specific CSO, e.g., the expected profit
for an individual available shared car and the cost of wear, tolls and employees. In
absence of a focal real-case, in our tests the cost parameters have the following values:
CD = 10, CCh = 30, CT = 0.01, CET = 0.5, CR = 0.2, CI = 100, CL = 10, CChE = 0.1.
These values have been chosen based on two principles. First, the relative size of each
cost component should reflect the importance of each cost. Secondly, each cost should
incorporate its value in a dynamic long-term environment, e.g., the benefit of charging a
car is not observable directly, but is beneficial when simulating an entire day.

Table 3: Parameters used in the Rolling Horizon framework and the Simula-
tion model.

Notation Value

Start time business hours Tstart 6 AM

End time business hours Tend 6 PM

Time increments Tincrement 15 min

Planning period T 60 min

Overtime T
L 10 min

Charging time Tcharge 210 min

Car range Trange 120 min

Upper battery threshold ξupper 40%

Lower battery threshold ξlower 20%

The final ALNS parameters are reported in Table 4 and based on comprehensive
testing performed by Hellem et al. [2018]. In addition, Hellem et al. [2018] show that
the ALNS heuristic produces high quality solutions to the E-CRP for instances where the
commercial software Xpress fails. Furthermore, Hellem et al. [2018] show that, compared
with a greedy construction heuristic, the fully calibrated ALNS heuristic finds solutions
on average 45.1 % closer to the best-known.

The hardware and software used to implement and test the solution method for the
DE-CRP are presented in Table 5. The ALNS heuristic from Section 5 and the simulation
model from Section 6 have been implemented in Java 9.0.4. The maximum computation
time to solve each E-CRP in the Rolling Horizon simulation framework is set to three
minutes.

7 Computational study
We tested the performance of the periodic re-optimization framework for the DE-CRP
on the test instances described in Section 6.2. In the following, we first show the results
from testing the proposed solution method, before we discuss managerial insights.
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Table 4: ALNS: Final Parameter Values

Parameter Value Description

TMAX 180 Max running time (seconds)
BINIT 2 Initial tabu list size
BMIN 2 Minimal tabu list size
BMAX 1024 Maximal tabu list size
IR 125000 Max number of iteration without improvement
IW 5 ln |C| The number of iterations before the LSO weights are updated
IDES 120 ln |C| Iterations without global improvement before destroy and repair
IB 6 Iterations without local improvement before increasing the tabu list size
IS 3 Iterations with local improvements before decreasing the tabu list size
MMAX 25 ln |C| Neighborhood size
Γ 0.4 The destroy/repair factor
RN

Q 1 LSO score for finding a new local solution
RG

Q 23 LSO score for finding a new global best solution
RL

Q 13 LSO score for finding a new better local solution
RG

U 23 Destroy and repair score for finding a better global solution
RL

U 13 Destroy and repair score for finding a new and better local solution
α 0.1 Update factor for both LSO and repair and destroy weights
ω1 . . . ω5 0.315, 0.315, 0.315, 0.005, 0.05 Weights for Shaw Removal

Table 5: Hardware and software used in testing

Processor 3,4GHz Intel E5
Memory 512GB RAM
Operating System CentOS 7.4
Java version 9.0.4

7.1 Results

The evaluation of the solution method is based on the objectives presented in Section 3.
The degree of demand served, referred to as DS, is the most important key performance
indicator. The number of rental cars charged by the service employees during the business
hours is also presented. To calibrate the solution method, two tests are considered; Section
7.1.1 tests the length of the planning period when solving each subproblem E-CRP, T ,
while Section 7.1.2 tests the replanning frequency, Tincrement. Each test is run over ten
days with different realizations of customer requests. The average scores over all days are
used as a basis for comparison. To reduce the variance of the results, all models are run
on the same set of realized customer requests.

7.1.1 Planning Period

This test explores the effects of changing the length of the planning period T . The length
of the planning period restricts the number of relocations that the ALNS outputs for the
service employees. Ideally, the E-CRP model would consider the whole planning horizon.
However, there are three main arguments against using long planning periods in the
proposed solution method. First, longer planning periods increase the search space due
to the increased number of possible routes for the service employees. The larger search
space may, in turn, increase the computational time needed for the ALNS to find good
solutions. Second, the future states of the system are stochastic due to varying customer
demand and travel times. A solution looking optimal at the moment may, therefore,
not even be feasible after the next couple of minutes due to unforeseen events. Finally,
since the solution method for the DE-CRP re-plans sequentially, the actions performed
by the service employees are usually only the first couple of actions provided by the
ALNS. Hence, the use of longer planning periods involves more calculations of needless
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actions that are not likely to be performed. Table 6 substantiates these arguments where
a planning period of 60 minutes slightly outperforms the alternatives. When using shorter
planning periods, the solutions provided by the ALNS become more greedy, explaining
the reduction in demand served when using a planning period of 40 minutes. In addition,
with a planning period of 60 minutes, the method is able to charge a higher number of
cars. This is in turn beneficial as it puts the CSO in a better position with regards to
being able to satisfy future demand (beyond the planning horizon of the subproblem).
The cars that are being charged are in most cases not available for rental due to low
battery levels.

Table 6: Demand served and cars charged for different planning periods

Instance T = 40min T = 60min T = 80min T = 100min T = 120min

DS % Cars
charged DS % Cars

charged DS % Cars
charged DS % Cars

charged DS % Cars
charged

D-20-65-5-3 58.35 53 64.10 58 60.48 53 59.48 60 58.98 53
D-50-170-12-6 60.36 139 63.74 136 62.81 131 61.31 129 61.77 124
D-120-380-24-12 57.51 279 58.31 285 57.37 266 58.41 255 56.19 251

Average 58.74 157 62.05 160 60.22 150 59.30 146 58.98 144
Green cells indicate best values for each test instance

7.1.2 Frequency of replanning

This test explores the effects of changing the replanning frequency Tincrement. Given the
result from Section 7.1.1, all tests use a planning period of 60 minutes. The results of
three different replanning frequencies are presented in Table 7. A replanning frequency
of 15 minutes performs slightly better than replanning frequencies of 10 and 20 minutes
when it comes to demand served. Replanning more often should, intuitively, do no worse
than replanning more seldom. However, it is noteworthy that optimizing too often may
have negative effects. One possible explanation is that high replanning frequencies imply
small changes to the system’s state between decision stages. Replanning too often may,
therefore, diminish the possible long-term benefits of the routes. However, it may increase
the number of cars charged. One explanation is that cars are classified earlier as in
need of charging by the simulation model. In addition, frequent replanning increases the
probability of charging rental cars. The probability increases because the ALNS has the
option to charge cars early more frequently.

Table 7: Demand served and cars charged for different re-planning frequen-
cies

Instance Tincrement = 10min Tincrement = 15min Tincrement = 20min

DS % Cars
charged DS % Cars

charged DS % Cars
charged

D-20-65-5-3 59.96 59 64.10 58 63.06 58
D-50-170-12-6 63.47 144 63.74 136 63.52 140
D-120-380-24-12 56.61 279 58.31 285 58.40 279

Average 60.01 161 62.05 160 61.66 159
Green cells indicate best values for each test instance
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7.1.3 Comparison with a Greedy Construction Heuristic

For each individual decision stage, i.e. for each E-CRP subproblem, the ALNS has an
average performance increase of 45.1 % based on the objective function from Section
A compared with the construction heuristic. Table 8 shows the results from using the
construction heuristic in the Rolling Horizon simulation framework. Interestingly, when
solving the DE-CRP, the difference in DS is only 7.86 %. This implies that the uncer-
tainty faced when solving the DE-CRP reduces the performance gap between the two
methods. However, it is noteworthy that the difference of 7.86 % in DS corresponds to
an additional 175 customers served throughout the 12-hour period for the largest test
instance. Furthermore, the construction heuristic charges fewer cars, most likely due to
inefficient relocations.

Table 8: Comparing the calibrated solution method to the Construction
Heuristic

Instance Construction Heuristic

DS % Cars
charged

D-20-65-5-3 54.73 47
D-50-170-12-6 55.5 112
D-120-380-24-12 52.33 229

Average 54.19 129
∆ to ALNS -7.86 pp -31

7.2 Managerial insights

In this section we discuss some managerial insights for CSOs that can be gained from
various tests. Sections 7.2.1 and 7.2.2 discuss insights of operational character, while
tactical and strategic concerns are addressed in Sections 7.2.3 and 7.2.4.

7.2.1 Benefits of Charging Cars Early

One objective of the proposed solution method is to charge cars in need of charging.
However, there are no guarantees that these relocations are done by the service employees
if they are not among the first relocations in the solutions to the E-CRP subproblems.
Hence, prioritizing early charging of cars seems beneficial and has been rewarded 0.1 per
time unit in this study.

In the following, we test the effect of including this early charging reward by comparing
it with the results without (denoted Regular). The results show that rewarding early
charging improves the demand served by approximately 4 %. As shown in Figure 7,
rewarding early charging of cars, keeps the number of cars in need of charging at a low
and steady level compared to the Regular setting. When charging cars early, the short-
term demand served is slightly decreased. However, it is evident that the long-term costs
of not meeting future demand are higher than the short-term losses.

The benefit of charging early boils down to the preferences and opening hours of the
CSO. For instance, if a CSO only allows car rentals during the daytime, it seems beneficial
to prioritize serving demand short-term and do most of the recharging of cars during the
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Figure 7: Development of cars in need of charging for D-50-170-12-6

night. However, charging all cars during the night requires a sufficient number of service
employees to work the night shift. For instance, charging all cars in test instance D-50-
170-12-6 would require 12 hours of work with the given workforce. To prevent too much
work at night, it can therefore be advantageous to use strategies like early charging.

7.2.2 Destinations to Consider for Relocation

Section A introduced the set of car-moves which defined the possible destinations each car
can be relocated to. Similar to the method in Kirchler and Calvo [2013] for the Dial-a-
Ride problem, it is possible to reduce the search space by removing car-moves not likely to
be part of good solutions. Figure 8 shows the distributions of all car-moves present in the
best solutions to instance D-50-170-12-6 found by the ALNS heuristic. The distribution
is calculated by comparing the car-moves to the longest available travel time present in
the test instance. The figure indicates that it may be possible to significantly reduce the
search space without degrading the quality of the solutions found by the ALNS. This
implies that cars should in most cases be relocated locally, a finding which considerably
simplifies the operational problem. This can be utilized to reduce the computational time
for solving the E-CRP subproblems at each decision stage. Testing indicates that these
findings also hold for instances D-20-65-5-3 and D-120-380-24-12.

7.2.3 Number of Service Employees

The optimal number of service employees used in a carsharing system is dependent on
the problem instance as well as the CSO’s preference regarding the trade-off between
costs and customer satisfaction. Intuitively, increasing the number of service employees
strictly improves the performance of the system. However, it is evident from Figure 9
that the marginal value of additional service employees is diminishing. Having too few
service employees is punished by low levels of demand served, while too many service
employees yields no significant improvement in demand served. Based on the specific
cost and revenue values of the CSOs, the optimal number of employees should be chosen
where the marginal revenue of an additional employee is close to the marginal cost of an
employee.
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Figure 9: Difference in demand served when varying the number of service
employees. The difference is compared to using 12 employees from
the original test instance D-50-170-12-6.
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7.2.4 Number of Charging Stations

For the rental cars to be available for customers during the operating hours, charging
of cars is crucial. However‚ the number of cars that can be charged is restricted by
the number of available charging stations. Due to capital costs associated with charging
stations, this test explores the importance of a sufficient number of charging stations in
the carsharing system. Based on test instance D-50-170-12-6, two additional test instances
are generated; one with six charging stations and one with 24 charging stations.

Figure 10 shows that halving the number of charging stations results in fewer cars
available for customers. Hence, DS is reduced by 3.76 %. When doubling the number of
charging stations, DS is increased by 1.87 %. However, the increase in demand served
diminishes when doubling the number of charging stations. Similar to the case of service
employees, the number of charging stations should be chosen such that the marginal
revenue from adding a charging station equals the marginal cost.
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Figure 10: Development of cars in need of charging over the planning horizon
for instances with a different number of charging stations.

8 Conclusions
This paper presents a solution method for the Dynamic Electric Carsharing Relocation
Problem (DE-CRP). The DE-CRP considers routing of both service employees and rental
cars in a free-floating carsharing system. Folding bikes have been assumed as a means
of transportation for the service employees, as it offers high flexibility in urban areas.
The presented solution method adopts a Rolling Horizon framework, solving subproblems
(E-CRPs) of the DE-CRP at different decision stages.

The subproblems are solved using an Adaptive Large Neighborhood Search (ALNS)
heuristic based on Ropke and Pisinger [2006]. The objective is to maximize profits by
providing a suitable number of cars charged following an expected ideal distribution of
rental vehicles. A solution consists of routes for each service employee, which cars to
relocate, and where to relocate them. The solution method allows solutions where service
employees originate and end at all locations in the operating area. Thus, the method is
capable of solving the E-CRP that arises in free-floating carsharing systems with electric
vehicles, at any point in time.

22



The E-CRP is a variation of classical vehicle routing and pickup and delivery problems.
The problem structure of the E-CRP allows identification of the minimal set of possible
relocation destinations for each car. Each element in this set is denoted a car-move. The
proposed solution method derives solutions by searching in and combining elements from
the set of car-moves. The use of car-moves is a novelty which significantly simplifies
the pickup and delivery aspect of the E-CRP, and thus reducing the complexity of the
problem.

A simulation model is developed to test the proposed solution method on problem
instances for the DE-CRP. The simulation model mimics the work day of an artificial
carsharing organization. The solution method is able to provide efficient solutions for
test instances of at least 120 nodes and 380 rental cars. When stress-testing the solu-
tion method, it serves 62% of customers on average during a period of 12 hours. This
equals 1 674 customer rentals served. Compared to a greedy heuristic, an additional 200
customers are served using the proposed solution method.

In conclusion, solving the DE-CRP with the proposed solution method provides high-
quality solutions in reasonable computation time for the problem instance tested. Novel
search methods have been introduced that effectively deal with the large search space of
the problem. In total, we consider the proposed solution method a significant contribution
to the creation of efficient, and lasting carsharing systems.

Still, a number of questions remain to be addressed in future research. In this article,
the level of granularity of the discretization of the business area was arbitrarily decided
before the analysis. Furthermore, every zone of the city was subject to the same dis-
cretization. It could be argued that central zones of the city might benefit from a finer
discretization, or that a different level of granularity might partially affect the results.
The effect of the discretization strategy on the relocation actions is to be clarified. We
also assumed that cars must be fully charged once plugged in. This might reduce the
ability of the model to satisfy demand. An extension of the model is envisaged where the
decision of unplugging a partially charged car in order to fulfill demand is endogenous to
the model. Finally, the current method takes the ideal state (i.e., the ideal number of
cars) in each zone as an input coming from an exogenous analysis of historical demand.
However, demand is influenced by supply (and thus by the deployment of the fleet) as
well as by competition. This interplay also requires a dedicated analysis.
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A The E-CRP subproblem
We propose a Mixed Integer Linear Programming formulation for the E-CRP subprob-
lem. The appendix is self-explanatory meaning that all notion used in the formulation is
introduced here. In the cases when the same sets and parameters are used in the heuristic
presented in Section 5 and here, the same notation is used.

The operating area is modeled as a complete graph, where nodes represent parking
zones and charging stations and edges represent movements between zones and stations.
The weight of an edge represents the travel time, and might change between decision
stages due to different traffic conditions. Each parking node may be a surplus or a deficit
node, if the number of available cars in the corresponding parking zone is higher or lower,
respectively, than the ideal state. Let N be the set of nodes, NC the set of charging nodes
and N P the set of parking nodes, with NC

⋂
N P = ∅ and N = NC ∪N P . Furthermore,

let N P+ ⊆ N P be the set of surplus nodes and N P− ⊆ N P the set of the deficit nodes,
with N P+

⋂
N P− = ∅. However, since some parking nodes are at their ideal state we

do not necessarily have N P = N P− ∪ N P+. Furthermore, let N PC ⊆ N P be the set of
parking nodes with cars in need of charging. Note that N PC may be disjoint from both
N P+ and N P− as some nodes in N PC might be at their ideal state.

Let C be the set of cars potentially subject to relocation, i.e. those either in a surplus
node or those in need of charging. Let R be the set of car-moves. A car-move r is defined
as a triplet (c, o(r), d(r)) with c ∈ C being a car, o(r) ∈ N P+ ∪ N PC its origin node,
and d(r) ∈ N P− ∪ NC its destination node. Particularly, for sufficiently charged cars in
surplus nodes, car-moves always go to deficit nodes and are referred to as parking-moves.
Similarly, for cars in need of charging, car-moves always go to charging nodes and are
referred to as charging-moves. A car in need of charging can only be subject to charging
moves. This means that even if the charging station is within a deficit zone, the car in
need of charging is not counted towards the deviation from the ideal state.

Parking-moves and charging-moves are illustrated in Figure 11. Let Rc be the set
of possible car-moves for car c. Let RPD

i be the set of parking-moves with destination
deficit node i. Similarly, let RCO

i be the set of charging-moves that originate in node
i ∈ N PC . Finally, let RCD

i be the set of charging-moves that end in charging node i.
Note that we consider only car-moves that contribute to increasing demand satisfied, i.e.,
only car-moves from surplus nodes or from nodes with cars in need of charging.

N PC NC

d(r)o(r)

Charging-move r

N P+ N P−

d(r)o(r)

Parking-move r

Figure 11: Car-moves divided into parking-moves and charging-moves

The E-CRP assigns car-moves to service employees and decides the order in which they
are carried out. This is done in the following way. Let K the set of service employees.
Let M be an ordered set of possible abstract tasks to perform, where |M| is the total
number of tasks an employee might perform during the planning horizon. The set of tasks
is identical for all employees, that is each employee is assigned an identical abstract set
of tasksM to perform. The set of tasks is ordered, in the sense that task m ∈ M must
be performed before task m+ 1 ∈ M. An abstract task m ∈ M becomes concrete when
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it is assigned to a car-move from R. As an example, assume employee k is assigned to
perform two car-moves, r1 and r2, both in R, and to be performed in this order. Then,
tasks m1 and m2 ∈ M become concrete: task m1 ∈ M corresponds to car-move r1 and
task m2 ∈M corresponds to car-move r2. This will be further clarified when introducing
the decision variables.

For each car-move r ∈ R let TH
r be the time needed to perform the car-move. This

time includes driving time, parking, possibly plugging to a power source, and basic main-
tenance. We track the position of each parked car and calculate the driving time from this
location to the charging station, for charging-moves, or the centre of the deficit zones, for
parking-moves. Cars may be unavailable at the start of the planning period. Hence, let
T SC
r indicate the earliest start time of car-move r. The same applies to service employees.

In fact, at the beginning of the planning period, they might still be completing some
tasks assigned to them during the previous planning period. Therefore, let T SO

k be the
earliest start time for service employee k. Furthermore, let node o(k) ∈ N be the position
of employee k at time T SO

k . Travel times between nodes i and j, using folding bikes or
public transport, are denoted by Tij. The total planning period is denoted T . However,
some overtime TL is allowed.

The initial deficit of cars from the ideal state in parking node i, is denoted S0−
i . For

parking nodes i ∈ N PC , SC
i denotes the initial number of cars that require charging. Every

charging node i has an available capacity of NCS
i . Since NCS

i represents the available,
and not the total, capacity, it should be noted that it can vary from one decision stage to
the next. We count the number of cars currently being charged at charging station i in
the beginning of the planning period and subtract this number from the actual capacity
to get NCS

i .
Let CCh be the remuneration for each car recharged, and CD the remuneration for each

car relocated to decrease the deficit in a parking node. These parameters may correspond
to, for example, the expected revenue generated by means of a fully charged car. Let CET

be the cost per time unit used beyond the allocated planning period. This cost is possibly
artificially set in order to prioritize timely completion of tasks, especially during the day
when the system is used the most. Let CR be the cost per unit of time of the relocation
activities, which includes wear, tolls and electricity. Finally, let CT be the cost per time
unit of the idle time of the service employees, used to increase the activity within the
planning period.

Let decision variables xkrm indicate that service employee k performs car-move r as
task number m. As an example, xk1,r2,m5 = 1 indicates that the fifth task (m5) on the
agenda of employee k1 is car-move r2. Thus, abstract task m5 becomes concrete when
associated with a car-move (r2 in this case). Hence, the route of the service employee can
be derived from the sequence of the tasks assigned. Figure 12 illustrates an example in
which a service employee performs three car-moves. Initially the service employee is in
its origin o(k). The employee then travels to the origin of the first car-move, o(1), and
relocates the corresponding car in need of charging to its destination d(1) (shown as node
d in the figure), which has been determined through the optimization. From d(1) the
employee travels (by means of a folding bike or by public transport) to the origin of the
second car-move o(2) and completes the second car-move by relocating the car to d(2),
which coincides with d(1) and is therefore shown as node d. The service employee finally
travels to the origin of the third car-move o(3) and relocates the car to d(3) (again shown
as node d in the figure since it coincides with d(1) and d(2)). This example also serves
to illustrate that the problem is open-ended, that is, there is no depot and the routes
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o(1)o(k)

o(2)

d

o(3)

xk1
1

xk22

x
k33

Figure 12: Example illustrating a service employee k performing three car-
moves. Dashed lines indicate traveling by folding bike or public
transport, between car-moves. Solid lines indicate service em-
ployee movements with cars to relocate. In this example, all
car-moves go to the same destination shown by node d, which
corresponds to d(1), d(2) and d(3).

of the service employees can terminate in any node, and that each node can be visited
several times. Furthermore, let variable tkm indicate the time when task m is started by
employee k and let variables t+k and t−k represent the time used in excess and in short
of T , respectively, by employee k. A complete list of the notation can be found in the
appendix.

Hence, the E-CRP can be stated as follows:

max z =
∑

i∈NP−

∑
k∈K

∑
r∈RPD

i

∑
m∈M

CDxkrm +
∑

i∈NPC

∑
k∈K

∑
r∈RCO

i

∑
m∈M

CChxkrm −
∑
k∈K

CT t−k

−
∑
k∈K

CET t+k −
∑
k∈K

∑
r∈R

∑
m∈M

CRTH
r xkrm (4a)

∑
k∈K

∑
r∈Rc

∑
m∈M

xkrm ≤ 1 c ∈ C (4b)∑
r∈R

xkrm ≤ 1 k ∈ K,m ∈M (4c)∑
r∈R

xkr(m+1) ≤
∑
r∈R

xkrm k ∈ K,m ∈M \ {|M|} (4d)∑
k∈K

∑
r∈RPD

i

∑
m∈M

xkrm ≤ S0−
i i ∈ N P− (4e)

∑
k∈K

∑
r∈RCO

i

∑
m∈M

xkrm ≤ SC
i i ∈ N PC (4f)

∑
k∈K

∑
r∈RCD

i

∑
m∈M

xkrm ≤ NCS
i i ∈ NC (4g)

tkm + TH
r xkrm +

∑
v∈R

Td(r)o(v)xkv(m+1) −Mr(1− xkrm) ≤ tk(m+1)
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k ∈ K, r ∈ R,m ∈M \ {|M|} (4h)

tkm ≤ tk(m+1) k ∈ K,m ∈M \ {|M|} (4i)
T SC
r xkrm ≤ tkm k ∈ K, r ∈ R,m ∈M (4j)

(T SO
k + To(k)o(r))xkr1 ≤ tk1 k ∈ K, r ∈ R (4k)

tk|M| +
∑
r∈R

TH
r xkr|M| + t−k − t

+
k = T k ∈ K (4l)

tk|M| +
∑
r∈R

TH
r xkr|M| ≤ T + T

L
k ∈ K (4m)

xkrm ∈ {0, 1} k ∈ K, r ∈ R,m ∈M (4n)
tkm ≥ 0 k ∈ K,m ∈M (4o)
t+k ≥ 0 k ∈ K (4p)
t−k ≥ 0 k ∈ K (4q)

Objective function (4a) consists of the sum of the benefit for reaching the ideal state
at deficit nodes and the benefit for recharging cars with depleted battery, minus the cost
of the employees’ idle time, the cost for exceeding the planning horizon, and the cost of all
relocation activities as a consequence of wear, tolls and electricity. The cost for the idle
time of employees is introduced to take into account that, in the E-CRP, we deal with
only a portion of the entire planning horizon. Idle time costs encourage employees to
complete their tasks as soon as possible, and thus leave the company in a better position
to address the next re-optimization. The objective function includes the main drivers of
a CSOs decisions: on the one hand the need of ensuring a “well deployed” and ready to
use (i.e., charged) fleet, on the other hand, the need to contain the costs deriving from
ensuring such level of service. Constraints (4b) state that each car can be relocated at
most once (i.e., only one of the car-moves associated with the car can be performed).
Constraints (4c) make sure that each task of each employee can consist of at most one
car-move. This also means that some task may not be associated with a car-move (i.e.,
not performed). Constraints (4d) state the precedence between consecutive car-moves.
Constraints (4e) and (4f) limit the number of cars that can be moved to deficit nodes and
the number of cars in need of charging, respectively. Constraints (4g) enforce the capacity
of the charging stations. Constraints (4h) ensure consistent tracking of the time used for
each employee, car-move and task. Basically, it means that the time when starting a
car-move must be greater than or equal to the time the employee started on its preceding
car-move plus the time he/she spent to perform that preceding car-move and the time
needed to travel from the destination of that preceding car-move to the beginning of
the current one. Here, Mr is a constant large enough to make the constraint redundant
when xkrm = 0. Constraints (4i) state that the starting time of two consecutive tasks
must be non-decreasing. Constraints (4j) ensure that no car-move can start before the
earliest availability of its car. Constraints (4k) state that the first task assigned to an
employee cannot start before its earliest availability plus the time to reach the origin of
the first car-move. Constraints (4l) keep track of the deviations from the planning period.
Constraints (4m) enforce the upper bound on over time. Finally, constraints (4n)-(4q)
define the domain for the decision variables.
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