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Abstract

Given that the scope of stochastic programming is to suggest good decisions and not to estimate
probability distributions, we demonstrate in this paper how to numerically evaluate which properties
of random variables are more important to capture in a stochastic programming model. Such analysis,
performed before data collection, can indicate which information should be primarily sought, and which
is not critical for the final decision. We apply the analysis to a real-life instance of the maritime fleet
renewal. Results show that some properties of the stochastic phenomena, such as the correlation between
random variables, have very little influence on the final decision.

1 Introduction

Stochastic programming amounts to formulating and solving mathematical programming models where some
of the coefficients are not known with certainty and thus represented by random variables. Besides a model of
the decision problem (i.e., a the stochastic program), a model of the uncertainty is also required. The latter
model is based on data which, depending on the specific case, may be available in different formats, ranging
from detailed time series to simple personal beliefs about the random phenomena. As an example, data can
be available in the form of experts opinions which are difficult to express numerically, such as “a patient
suffering from pathology P is more likely to live an active life after one year if he receives treatment T after D
days”. The resulting model of uncertainty can then be more or less detailed (e.g., assigning probabilities to
two or three events or drawing an extensive, possibly multi-variate, probability distribution). In this phase,
understanding how important different properties of the uncertainty (e.g., means, supports, correlations or
variances) are, for the specific decision model, can lead to better models of the uncertainty as well a to more
effective data collection/analysis efforts. As an example, this can guide data collection if the available data
is scarce and important properties cannot be inferred, or data analysis if the data is abundant, such that
only the properties that matter are carried along in the resulting model.
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In any case, to solve the resulting stochastic program, one requires a discrete representation of the
uncertainty (i.e., in order to avoid solving integrals). Typically, scenario generation methods are based on
sampling or on matching statistical properties of the stochastic phenomena. Particularly, the latter may
be suitable for the case when the modeler is only aware of, or interested in, some of the properties of the
underlying distribution. For an overview over scenario generation methods see, e.g., Dupacová et al. (2000)
and King & Wallace (2012, Ch.4). The goal of scenario generation is to generate a set of scenarios such that
the decision model behaves (almost) as if we used the original distribution. And however one models the
uncertainties, there is always the question: How good is the uncertainty model? And beforehand: Which
properties of the uncertain phenomena are more important to capture? We wish to give these questions an
answer based on the actual decision model.

Similar questions interested Kallberg & Ziemba (1984); Broadie (1993); Chopra & Ziemba (1993) and
more recently Kaut et al. (2007). In these studies the authors investigated the effect of errors in statistical
properties (such as mean, variances or covariances) in the context of optimal portfolio selection. Our scope
is that of proposing a more general analysis framework.

The purpose of this paper is, therefore, to demonstrate for multistage stochastic programs (MSPs) how to
quantitatively evaluate the importance of individual properties of the stochastic phenomena and, as a result,
the consequences of planning using incorrect values for a given property. Such analysis, besides addressing
data collection and data analysis towards the important properties, can provide better understanding of
the problem and of its drivers. The analysis, though general, is explanatorily performed on a case of the
maritime fleet renewal problem (MFRP). The problem consists of choosing how many and which type of
ships to invest in and when to do so, in order to cope with the uncertain future market situation. Most
of the parameters of the problem are stochastic and stochastic optimization can be a useful tool for the
MFRP. Pantuso et al. (2014) showed that using stochastic programming, rather than solving the mean value
problem, can lower the total expected cost by up to around 10%, in some market contexts. Uncertainty is
therefore an important element of the problem. In this paper we evaluate which properties of the uncertainty
are more important to capture.

The remainder of this paper is organized as follows. In Section 2 we describe how we evaluate the
importance of a property. In Section 3 we analyze different properties of the uncertainty in the MFRP while
conclusions are drawn in Section 4.

2 Importance of a property

In this section we demonstrate how to estimate the importance of individual properties of the uncertainty in
MSPs. That is, we study how optimal values of optimization problems depend on properties (such as means,
variances, correlations, supports, and shapes). We do that by first defining a probability distribution across
all random variables using our best estimates of all properties. Applying the scenario generation method
proposed by Høyland et al. (2003), we generate a scenario tree for our problem using this distribution. We
then repeat the process, but such that one property is changed. Now we can appreciate how optimal values
are influenced by the property we changed. Below we describe how this can be done for multistage problems.

Consider a property that we wish to investigate (e.g., we are not confident about our estimates and
wish to know if that matters). We define a probability distribution having a given value for that property
(e.g., our best estimate) and generate a scenario tree based on it. Given the scenario tree, we solve the
corresponding MSP, and store its optimal objective value. Let this represent the expected result of using the
correct property value (ERCP). Then, in order to evaluate the expected result of using an incorrect property
value, we define a probability distribution such that the value of the property under investigation (and only
that) is changed. We make first-stage decisions using a scenario tree based on the new distribution. The
difference between this model and the former is that this one sees a different (incorrectly described) uncertain
future. The first-stage solution is then stored (this is the only part of the solution that actually would be
implemented). At the beginning of the second stage, given the new information (i.e., we realize in which
node of the correct tree we are) and first-stage decisions (the solution we stored), we build another model
to make conditional decisions for the second stage. The farther future (stages three, four and so on) is
again represented by a scenario tree matching the incorrect property value and previous decisions are fixed.
Conditional second-stage solutions are stored (the only ones which would be implemented). This process
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continues for the subsequent stages. When we have stored decisions for all stages but the last, we observe the
last-stage realizations, fix the variables at all the previous stages to the corresponding stored solutions, and
solve a stochastic program for the last-stage variables. The corresponding optimal objective value represents
the expected result of using the incorrect property value (ERIP), and can be compared to the expected value
of using the correct property value calculated before.

Notice that, in this process, we never make solutions which anticipate the future. At all stages, decisions
are made based on current information (including past decisions) but on incorrect descriptions of the uncer-
tain future. This shrinking-horizon procedure is close to the one used by Escudero et al. (2007) to calculate
the “dynamic value of the stochastic solution” for MSPs. When calculating the expected return of using
the mean value problem, at each node in the scenario tree (except those the last stage), they make decisions
based on past decisions, available information, and on approximating future stages by their expected values.
Our procedure is identical, except for the fact that in our case future stages are still uncertain, but incorrectly
described. A similar procedure is used by Fleten et al. (2002). They test the performance of two different
approaches to portfolio management on a shrinking-horizon scheme. They make first-stage decisions for both
approaches based on the same scenario tree. Then they generate a number of simulation scenarios, and for
each of them they generate conditional solutions for the following stages taking into account the first-stage
solution, again for both approaches. Each scenario gives a measure of the performance of each approach.

Assume the possible values for the property under investigation can be limited to a set Π. The set Π
can be based, for example, the decision makers knowledge about the problem or on the observation of the
available data. Designate π ∈ Π and π′ ∈ Π as the correct and incorrect value for the property, respectively.

Definition 2.1 The Pairwise Property Error – denoted by PPE(π, π′) – is the loss incurred when using
π′ rather than the correct property value π′, and is calculated as

PPE(π, π′) = |ERCP − ERIP |

By evaluating the PPE(π, π′) for different pairs of property values in the given set, one can come to an
understanding of how the specific property can influence optimal objective values. It gives a measure of how
wrong one can be if the value of that property is incorrect, and consequently the value of obtaining the right
property value.

The procedure to calculate the PPE(π, π′) is described in Fig. 1 for an example three-stage problem.
Assume that the scenario tree in Fig. 1a represents the one matching by the correct property value, say π
(note that its nodes are drawn with solid lines). When planning with the incorrect property value, say π′,
at the root node one would make decision x0 based on future outcomes mistakenly described by a scenario
tree matching incorrect property value π′. The incorrect part of the scenario tree is drawn in dashed lines
in Fig. 1b. Solution x0 is saved. At stage t = 1, one can end up in either node 1 or 2 of the correct tree in
Fig. 1a, as shown in Fig. 1c. Past decisions (i.e., those belonging to the root node) are fixed at the value x0
previously saved (indicated by a crossed node). Decisions for nodes 1 and 2 are made based on an incorrect
description of the farther future (i.e., based on π′ for t = 2), see Fig. 1c. Finally, at t = 2 all the uncertainty
is disclosed. Past decisions are fixed and one needs to solve for the last-stage variables, see Fig. 1d. The
corresponding objective value represents the ERIP, i.e., the expected result of using the incorrect property
value, and can be compared to the ERCP obtained by solving the stochastic program over the scenario tree
in Fig. 1a, in order to calculate the PPE(π, π′).

3 Application to the Maritime Fleet Renewal Problem

In this section we estimate the importance of different properties of the uncertainty affecting the Maritime
Fleet Renewal Problem (MFRP). The problem consists of deciding how to modify the available fleet of ships
in order to efficiently meet future market requirements. The fleet can be expanded by ordering new ships or
buying second-hand ones, and shrunk by selling or demolishing available ships. For short-term needs, ships
can also be chartered in and out for periods of time (e.g., days, weeks or months). When deciding upon
fleet renewal plans shipping companies have to take ship operations into account in order to make a correct
estimation of the tonnage requirement. In liner shipping, as an example, ships sail on trades, which consist
of fixed routes between two geographic areas (e.g., Europe to North America). Every time a ship sails on
a trade it transports cargo from the origin to the destination. Therefore, in a given period, a number of
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(a) Planning with the correct property value (b) Planning with the incorrect property value at t = 0

(c) Planning with the incorrect property value at t = 1 (d) Last-stage decisions

Figure 1: Procedure to calculate the PPE(π, π′). Nodes drawn with solid lines represent the correct represen-
tation of uncertainty, while those in dashed lines represent an incorrect one. Crossed nodes represent nodes
whose variables are fixed.

voyages on each trade are in general performed in order to satisfy the corresponding transportation demand.
Different voyages may be performed by different ships, and each ship can alternate voyages on different
trades. Ocean-going ships come usually in a big variety of types differing at least in size, speed, cost and
technological characteristics.

The problem is highly affected by uncertainty. Ship prices, charter rates, fuel prices, demolition rates and
demand are in fact very volatile, and attempts to make accurate forecasts are usually hopeless in practice.
Furthermore, given the long lifetime of ships, a long planning horizon must be considered. In addition,
fleet renewal decisions are typically made periodically, e.g., every year, in light of new information about
the market status (and the technological development) obtained. This makes the problem stochastic and
multistage. A more thorough description of the problem can be found in Pantuso et al. (2014). The authors
also propose a multistage stochastic model for the problem which will be used in the tests performed in what
follows.

We assess the effect of planning with incorrect values of given properties of the uncertainty on a real-life
stochastic problem, based on the PPE(π, π′) defined in Section 2. Pantuso et al. (2014) showed that, when
the charter market does not offer many ships for chartering – which is typical in markets with very specialized
ships types – using stochastic programming can noticeably lower the total expected cost. Uncertainty is
therefore a very important element of the problem. Here we touch upon what statistical properties are more
important to capture in the model of uncertainty. In Section 3.1 we introduce the instances we tested. In
Section 3.2 we discuss the property “correlations”, in Section 3.3 we discuss the properties “mean” and
“support”, and in Section 3.4 we discuss the property “shape of the distribution”. Finally, in Section 3.5 we
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evaluate the effect of combined mis-specification of property values.

3.1 Instances

We use instances based on the real case of Wallenius Wilhelmses Logistics (WWL), a major liner shipping
company engaged in transportation of rolling equipment. They transport three main types of cargo: cars,
high and heavy vehicles (e.g., trucks or tractors), and breakbulk cargo (i.e., high-weight/volume items such
as train coaches or big engines). Instances vary in the number of ship types, trades and scenarios considered.
Table 1 reports the instances considered. Letters S, M and L stand for small medium and large, respectively,
with respect to the number of ship types and trades, while the following number represents the number of
stages (e.g., M3 indicates a three-stage medium-size instance).

Scenarios are generated by means of a variant of the heuristic proposed by Høyland et al. (2003), which
creates scenarios matching the first four marginal moments of the distribution plus the given correlation
matrix. Acceptable in sample stability (see Kaut & Wallace (2007)) is achieved with 15 scenarios in the
second-stage and 10 the third. However, the reliability of results we propose in the following sections was
confirmed by using up to 200 scenarios for two-stage programs, and 1600 (40 times 40) for the three-stage
programs. Since we decided to work only with problems which we can solve to optimality, in order for the
results not to be biased by the quality of heuristic solutions, we only consider up to three stages. The length
of the planning horizon considered is six year, which represents the length of the forecasts made by WWL.

Table 1: Instances of the MFRP

Instance S2 M2 L2 S3 M3 L3
# Ship types 6 8 10 6 8 10
# Trades 5 8 12 5 8 12
# Stages 2 2 2 3 3 3
# Scenarios 15 15 15 150 150 150

We consider a total of six random variables for each stage t, ξt1, . . . , ξ
t
6, each determining the realization

of associated parameters of the MFRP at stage t. Each parameter associated to a given random variable is
therefore itself a random variable (random parameter in what follows). Random parameters are connected
to the underlying random variable by a relationship of type: RPt = E[RPt](1 + δξti), where RPt is the
realization of the random parameter at stage t, E(RPt) is its expected value, δ ∈ [0, 1] is a constant which
determines the support width, and ξti , with i ∈ {1, . . . , 6} is the underlying random variable. We will assume
that the company forecast represent expected values.

Variable ξt1 determines the realization of fuel prices at stage t. Variable ξt2 determines the realization of
second-hand ship purchase and selling prices, newbuilding prices and charter (in and out) rates. Variable
ξt3 determines the realization of the steel price (and consequently the scrapping rates). Finally, variables
ξt4, ξt5 and ξt6 determine the realizations of the demand of cars, high and heavy vehicles and breakbulk
cargo, respectively. All random parameters associated to the same random variable are assumed perfectly
correlated (e.g., ship prices and charter rates are therefore assumed perfectly correlated). Since for each
random parameter the forecasted value is assumed as expected value, random variables represent errors in
the forecast. For this reason we assume random variables to be uncorrelated along time, i.e., ξti is uncorrelated

with ξt
′

i for each t, t′.
In all the tests proposed in what follows, except for where otherwise indicated, all the random variables

have uniform marginal distributions over the support [−1,+1]. The actual support, for each associated
random parameter is defined by a constant δ. Values of δ are 0.6 for demands and second-hand prices,
0.5 for charter rates, 0.15 for newbuilding costs, 0.4 for the fuel price and 0.2 for the scrapping rates. As
an example δ = 0.5 corresponds to allowing the random parameter to vary by ±50% from its expected
value. These values are chosen in order to reflect the fact that demand, ship prices and charter rates are in
general more volatile than newbuilding prices and scrapping rates (which besides the status of the market
also depends on the cost of labor and of materials and are somewhat more predictable). The importance of
the support and of the distribution are tested in Section 3.3 and Section 3.4, respectively.
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Table 2: Correlation matrices at all stages

(a) Matrix A

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6
ξ1 1 0.65 0.7 0.85 0.75 0.75
ξ2 1 0.9 0.85 0.85 0.85
ξ3 1 0.8 0.8 0.8
ξ4 1 0.8 0.7
ξ5 1 0.7
ξ6 1

(b) Matrix B

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6
ξ1 1 0.65 0.7 0.85 0.8 0.75
ξ2 1 0.9 0.4 0.4 0.4
ξ3 1 0.4 0.4 0.4
ξ4 1 0.8 0.7
ξ5 1 0.7
ξ6 1

(c) Matrix C

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6
ξ1 1 0.65 0.7 0.4 0.4 0.4
ξ2 1 0.9 0.4 0.4 0.4
ξ3 1 0.4 0.4 0.4
ξ4 1 0.3 0.3
ξ5 1 0.3
ξ6 1

(d) Matrix D

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6
ξ1 1 0.65 0.7 0.85 0.3 0.3
ξ2 1 0.9 0.85 0.3 0.3
ξ3 1 0.8 0.3 0.3
ξ4 1 0.3 0.3
ξ5 1 0.3
ξ6 1

Problems have been modeled and solved using the Java callable libraries of ILOG Cplex 12.2 on a
2x2.4GHz AMD Opteron 2431, 6 core machine, with 24Gb ram.

3.2 Importance of the Correlations

In this section we evaluate the property “correlations”. Consider the four correlation matrices in Table 2.
Matrix A (Table 2a) represents a situation in which the three demands are strongly positively correlated
between each other, and to all the costs and prices. All the components of the problem tend to move in the
same direction. Matrix B (Table 2b) represents the case in which the demands are still strongly correlated
between each other, but are little correlated to ship prices, charters and scrapping rates. Matrix C (Table
2c) represents the case in which the demands are weakly correlated between each other and to all prices and
costs. Finally, Matrix D (Table 2d) describes the case in which only the demand of cars is correlated to the
costs, prices, charters and scrapping rates of RoRo ships, and to fuel prices, while the other demands are
weakly correlated with both the car demand and all the costs and prices.

Assume we do not know which one correctly describes the market configuration, but we can limit the
choice to the four matrixes. We want to find out what happens if we use the incorrect correlation matrix.
We understand that not all correlation matrices may represent real market configurations, but we choose
to work with significantly different matrices, in order to test relatively extreme cases. When a correlation
matrix is chosen, it applies at all stages, therefore we simplify the notation by dropping the t index in Table
2.

Table 3 reports, for each pair of correlation matrices the average (Avg) and max (Max) PPE(π, π′) over
all the instances. For each instance the PPE(π, π′) is calculated ten times, each time with new scenario
trees (one matching the correct and the other the incorrect property value). The PPE(π, π′) is expressed
as a percentage of the expected cost obtained working with the correct property value, ERCP , in order to
preserve confidentiality relative to the objective value.

The increase in the expected cost for working with the incorrect correlation matrix is relatively small in all
cases. This might seem surprising at first sight. One may expect that, when demands are strongly correlated,
the initial investment is higher because the company is more likely to be facing simultaneous peaks in the
demand of all the three products. Indeed, when demands are strongly positively correlated, the stochastic
program suggests a slightly bigger investment/smaller disinvestment. However, the solution obtained with
weakly correlated demands, though suggesting a smaller investment, is still near optimal. Some of the
reasons are: 1) the objective function is relatively flat, presenting several near optima, 2) in both cases the
most flexible ship types are chosen, providing the ability to adapt to different market configurations, and 3)
the availability of different types of recourse actions such as, second-hand purchases/sales, time and voyage
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Figure 2: Supports for uniformly distributed random variables

charters. Related to that, a reasonable question might be whether planning with incorrect correlations is
more dangerous when the recourse actions become more expensive. Indeed, we experienced an increase in the
PPE(π, π′) when increasing the voyage charter costs. However, the impact of the errors in the correlations
was still limited even when the voyage charter cost was doubled. It is always possible to obtain different
numerical results by arbitrarily playing with the parameters of the problem. However, using realistic values
for voyage and time charter costs, showed that the impact of mistakes in the correlations is limited for our
case study.

Table 3: Average (Avg) and maximum (Max) PPE(π, π′) for every pair of correlation matrices. The correct
property value π is indicated by the row, while the incorrect property value, π′, is indicated by the column.

A B C D
Avg [%] Max [%] Avg [%] Max [%] Avg [%] Max [%] Avg [%] Max [%]

A - - 0.05 0.21 0.06 0.20 0.05 0.37
B 0.05 0.23 - - 0.05 0.29 0.06 0.26
C 0.06 0.23 0.05 0.41 - - 0.05 0.22
D 0.06 0.21 0.05 0.20 0.06 0.30 - -

3.3 Importance of Mean and Support

Now consider these four supports for the random variables, [−1,+1], [−0.9,+1.1], [−0.8,+1.2] and [−0.7,+1.3]
with mean values 0.0, 0.1, 0.2 and 0.3, respectively. Each random variable has uniform marginal distribu-
tion, therefore a shift in the support determines a shift in the mean. Fig. 2 shows two different uniform
distributions where the supports have the same width, but different positions and expected values. Notice
however that the width of the support of each random parameter is influenced by the corresponding value
of the constant δ (see Section 3.1). What happens if we set an incorrect mean in the model of uncertainty?

Fig. 3 reports the average and the maximum PPE(π, π′) for each pair of mean values. The position
of the support, and consequently the mean value, is a more critical property. In order to understand the
reasons behind this we tested the PPE(π, π′) for the support of each individual random parameter (i.e. we
tested the effect of mistaking individual supports while all the others are correct). Planning with higher
expected demand or expected charter rate, leads to tonnage surpluses. In the former case the model will
prepare to carry more cargo, in the latter to use less charters, thus a bigger fleet. Similarly, planning with
a lower expected demand or expected charter rate, leads to tonnage deficits. The model is in fact setting
up less capacity because it expects less cargo, in the former case, or to use more charters, in the latter.
Conversely, planning with incorrect expected variable operating costs has very little impact on the solution,
due to the fact that in any case, the model suggests investing in more efficient ship types.

As far as the width of the support is concerned, consider the supports [−0.6,+0.6] and [−0.1,+0.1].
The support width is generated by adjusting the constant δ introduced in Section 3.1, while the support of
the random variables remains [−1,+1]. In the former case the random parameter can vary between ±60%
from the expected value, in the latter case between ±10%. Fig. 4 reports the PPE(π, π′) for the property
“support width” for charter rates, variable operating costs, second-hand prices and demands. We can notice
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Figure 3: PPE(π, π′) for the property “Mean value”. The horizontal axis reports the correct mean value,
π, in the lower row, and the incorrect mean value, π′, in the upper row. Plain bars indicate average values,
while patterned bars indicate maximum values.

that the problem is more sensitive to mistakes in the width of the support of the demand, while the loss
generated by incorrect supports for second-hand prices, charter rates and variable operating cost is lower.
Based on the discussion above, if the mean and support for the demands and the mean of the charter rates
are correct, the model has sufficient information to determine the correct tonnage requirement. However,
setting an incorrect width for the support of the demand has an impact. This indicates that, if one is not
sure about the support, just assuming it wider might not always be a safe way out.

This can be precious information from a shipping company perspective. WWL engage in transportation
contracts which commit the company to carry a given percentage of the customer’s production. The pro-
duction is however uncertain and the customer might sign transportation contracts with different transport
providers. If the company is able to negotiate upper and lower bounds on the amount to carry, this would
be highly beneficial when making fleet renewal plans, as shown in Fig. 3 and Fig. 4.

3.4 Importance of the Shape of the Distribution

Now, we assume the modeler is fairly confident about the supports (i.e., [−1,+1]), correlations (i.e., matrix A
in Table 2a), and mean (i.e., 0), but is not certain about how the probability is distributed. Consider the fol-
lowing marginal probability distributions uniform (U [−1, 1]), triangular (T [−1, 1, 0]), and “four-parameters”
beta with α = β = 2 (B[2, 2,−1, 1]). The uniform distribution is relatively different from the other two as it
does not have a peak. The triangular and beta distributions are instead similar as they are both symmetrical
around the mean.

In Table 4 we report the average and max PPE(π, π′) due to errors in the shape of the marginal
distributions. Rows report the correct shape of the distribution while columns report the incorrect one.
Although ignoring the peak seems to have a slightly higher impact on the fleet renewal plan (i.e., the average
PPE(π, π′) is higher), the loss is relatively low. This suggests that the fourth moment of the distribution is
not an important parameter to capture, or that at least that the first moment (mean) and the variance (at
least for the demand) have a higher impact.

3.5 Effect of combined errors

Finally, we evaluate the effect of combined errors, that is, the effect of planning with incorrect values in two
properties. In order to keep the notation readable, we continue referring to combined errors as PPE(π, π′)
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Figure 4: PPE(π, π′) relative to the support width for variable operating costs (VOPEX), second-hand
prices (SHP), charter rates (CC) and demands (DEM). Plain bars indicate average values, while patterned
bars indicate maximum values.

Table 4: PPE(π, π′) relative to the property “distribution”. Rows report the correct distribution while
columns report the incorrect one.

T[-1,1,0] U[-1,1] B[2,2,-1,1]
Avg [%] Max [%] Avg [%] Max[%] Avg [%] Max [%]

T[-1,1,0] - - 0.20 1.17 0.06 1.45
U[-1,1] 0.08 0.28 - - 0.21 0.84
B[2,2,-1,1] 0.03 0.33 0.20 0.53 - -
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but in this case π and π′ represent couples of property values. As an example, π might represent couple
(shape=triangular, mean=0.2)”.

We start by evaluating the PPE(π, π′) when an incorrect shape of the distribution is used together
with an incorrect value of the mean. We assume the support to be [−1,+1] and the correlations to be
described by matrix A in Table 2a. Consider the two “four-parameters” beta distributions B[α, β,−1, 1] =
B[3, 1.5,−1, 1] and B[1.5, 3,−1, 1]. The first beta distribution is left skewed while the second one is right
skewed. The mean value is 0.3 for B[3, 1.5,−1, 1] and −0.3 for B[1.5, 3,−1, 1]. If one plans, for example,
with the distribution U [−1, 1], but B[1.5, 3,−1, 1] out to be the correct distribution, one is planning with
both incorrect shape and mean value of the distribution. Therefore, we will in turn consider distributions
B[1.5, 3,−1, 1], B[3, 1.5,−1, 1], T [−1, 1, 0], and U [−1, 1] to be the correct distributions. This allows us to
evaluate the PPE(π, π′) on a combined error on shape and mean of the distribution.

Table 5: PPE(π, π′) on combined errors in means and shape of the marginal distributions.

T[-1,1,0] U[-1,1] B[3,1.5,-1,1] B[1.5,3,-1,1]
Avg [%] Max [%] Avg [%] Max[%] Avg [%] Max [%] Avg [%] Max [%]

T[-1,1,0] - - - - 10.51 28.07 6.94 22.05
U[-1,1] - - - - 8.23 11.88 8.22 14.30
B[3,1.5,-1,1] 8.91 12.95 6.96 10.23 - - 26.18 39.4
B[1.5,3,-1,1] 14.35 20.93 17.48 25.50 61.36 86.72 - -

Table 5 reports the results of the tests. Clearly, the magnitude of the PPE(π, π′) increases noticeably
with respect to the values obtained in the previous sections. The main driver is, however, again the mean
value. Notice, in fact, that between B[1.5, 3,−1, 1] and B[3, 1.5,−1, 1] there is a 0.6 difference in mean value,
higher than what tested in Section 3.3. However, the simultaneous error in the shape of the distribution
increases the relevance of errors in the mean. Notice in fact that PPE(B[3, 1.5,−1, 1],U [−1, 1]) is caused by a
0.3 difference in the mean as in Fig. 3, but the simultaneous error in the shape of the distribution determines
an increase of PPE(π, π′) of a few percentage points. Notice also that PPE(B[1.5, 3,−1, 1],B[3, 1.5,−1, 1])
is much higher than PPE(B[3, 1.5,−1, 1], B[1.5, 3,−1, 1]) showing that, in our case, overestimating the mean
is far more dangerous than underestimating it. Overestimating the mean leads in fact to extremely high
tonnage oversupply and, consequently unjustified investments in new ships.

Let us continue by evaluating the effect of simultaneous errors in the shape of the marginal distributions
and in the correlations. Assume the support to be [−1,+1] and the mean to fall in 0. In Table 6 we report
the PPE(π, π′) obtained by assuming as the correct combination of property values, in turn, distribution
U [−1, 1] with correlations matrix B (see Table 2b), and distribution T [−1, 1, 0] with correlations matrix C
(see Table 2c). Notice that these combination have mean value and support in common. Matrices B and
C have been chosen as they gave the highest PPE(π, π′) in Table 3. The two combinations are indicated
as U-B and T-C, respectively, in Table 6. Notice that the error in the correlations determined only a slight
increase in PPE(π, π′) with respect to Table 4, where only the distribution is incorrect.

Table 6: PPE(π, π′) on combined errors in correlations and shape of the marginal distributions.

U-B T-C
Avg [%] Max [%] Avg [%] Max [%]

U-B - - 0.61 1.46
T-C 0.77 2.67 - -

Finally, we evaluate the PPE(π, π′) caused by simultaneous errors in mean and correlations. In order
to do that we focus on uniform marginal distributions, and evaluate the effect of shifting the mean while
changing the correlation matrix. We consider two configurations, namely uniform distribution over the
support [−1, 1] with correlation matrix B (see Table 2b), say B − U [−1, 1], and uniform distribution over
the support [−0.7, 1.3] with correlation matrix C (see Table 2c), say C − U [−0.7, 1.3]. Notice that the
two configurations have different mean and correlation matrix. Table 7 reports the PPE(π, π′) relative to
simultaneous errors in mean and correlations. Also in this case, incorrect correlations slightly amplified the
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magnitude of errors in the means. In fact, the results in Table 7 show a slight increase in PPE(π, π′) with
respect to the results in Fig. 3, which were obtained assuming perfect knowledge of the correlation matrix.

Table 7: PPE(π, π′) on combined errors in correlations and means.

B − U [−1, 1] C − U [−0.7, 1.3]
Avg [%] Max [%] Avg [%] Max [%]

B − U [−1, 1] - - 6.39 10.08
C − U [−0.7, 1.3] 6.10 9.58 - -

The analysis of combined errors, on our case study, confirms the absolute importance of having correct
mean values. It also supports the statement that the shape of the marginal distributions and the correlations
play a secondary role. In fact, the results shown in Table 6 and Table 7 are consistent with the results shown
in Table 4 and Fig. 3 where the shape of the marginal distributions and the means, respectively, where
analyzed individually. However, this section demonstrates that properties which individually have little
impact on decisions, may become misleading if incorrectly estimated when the decision maker has little
knowledge about other relevant properties. In this case, having correct values for the correlations can lower
the loss in case other properties are incorrectly estimated.

4 Conclusions

The scope of modeling uncertainty is to represent, in an abstract way, stochastic phenomena, capturing the
key features. Understanding the relative importance of properties of the phenomena, based on the specific
decision problem, might require much more than the modeler’s skills and intuition. We presented an analysis
framework and measures which can help understanding which properties of uncertainty are more important
to capture in a given model for decisions under uncertainty. The analysis is suitable for general stochastic
programs, and especially for inherently multistage ones, where using incorrect models of uncertainty can
lead to repeating poor decisions.

The analysis has been performed on a case of the maritime fleet renewal problem, which is modeled as
a multistage stochastic program. The tests reported show that some properties have very little influence on
the final decisions (e.g., the correlations between the random variables) while others (e.g., the mean values)
can lead to noticeable increases in the expected cost if incorrectly estimated. This analysis can be of help
for shipping companies when performing market analysis, data analysis and contract negotiation, in order
to work out the correct value for the critical properties. However, these results are not meant to suggest
neglecting properties such as the correlations. The results are in fact only valid for this specific case. The
analysis framework is instead general and can support decision makers any time models of the uncertainty
have to be created.
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