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Abstract

Multistage stochastic programs serve to make sequential decisions conditional on a gradual re-
alization of some stochastic process. The progressive arrival of new information divides a problem
into stages. As the number of stages increases, however, the applicability of stochastic program-
ming is halted by the curse of dimensionality. A commonly used approximation is obtained by
replacing the random parameters by their expected values, which results in a problem with fewer
stages. The present paper suggests metrics to support the choice of the number of stages: The
value of an extended Expected Value (EV) problem which accounts for stochastic approximations,
the Expected result of using the Expected Value solution (EEV), the Value of the Stochastic
Solution (VSS), and the values of two Wait-and-See (WS) approximations. We show that for lin-
ear minimization problems with random right-hand-side, the value of the EV problem provides a
lower bound that improves with the number of stages. The same holds for the WS approximations
for general linear minimization problems and with one of the approximations improving the EV
bound. In contrast, we show that the upper bound provided by the EV solution may not improve
with the number of stages. Finally, we define the marginal benefit of including an additional stage
in an EV approximation and demonstrate how to use it in a heuristic. We apply our approach to
a hedging problem and confirm that increasing the number of stages does not necessarily foster
better decisions.

1 Introduction

Stochastic programming is a well-recognized approach to decision-making under uncertainty. It as-
sumes that one or more parameters of a decision problem can be described by random variables
with a known distribution. In its most simple version, some decisions must made independent of the
realization of uncertainty, whereas other (recourse) decisions can adapt. The division of decisions
produces two stages and the resulting problem is known as a two-stage stochastic recourse program.
An extended version serves to make sequential decisions conditional on a gradual realization of some
stochastic process. The arrivals of new information divides the problem into multiple stages and the
problem is referred to as a multistage stochastic recourse program (MSRP). For an introduction to
stochastic programming, see Kall and Wallace (1994), Birge and Louveaux (1997), King and Wallace
(2012), Pflug and Pichler (2014).

Problems with such a structure arise, for instance, in asset/liability management Cariño et al.
(1994); Mulvey and Shetty (2004), capacity expansion Ahmed et al. (2003), energy systems Wallace
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and Fleten (2003); Fleten and Kristoffersen (2008); Kristoffersen and Fleten (2010), water resource
management Li et al. (2006), sports Pantuso (2017), air transportation Alonso et al. (2000), and
maritime transportation Pantuso et al. (2015); Bakkehaug et al. (2014). Stages often represent the
points in time at which new information arrives, e.g. the realization of future returns, demand and/or
supply, or market prices.

We adopt the following formulation of a MSRP:

RP = min
{
Eξ
[
z(x1, . . . , xT , ξ) :=

T∑
τ=1

cτxτ

]∣∣∣Aτ−1,τxτ−1 +Aτ,τxτ = bτ , xτ ∈ Xτ ,

xτ is Fτ -measurable, τ = 1, . . . , T
}
, (1)

where 1, . . . , T are stages and ξ := {ξt : t = 1, . . . , T} is a stochastic process defined on some prob-
ability space (Ω,F ,P) equipped with the filtration F1 ⊆ · · · ⊆ FT . Here, ξτ is a stochastic vector
collating the random components of the parameters cτ ∈ Rnτ , bτ ∈ Rmτ , Aτ−1,τ ∈ Rmτ × Rnτ−1 and
Aτ,τ ∈ Rmτ × Rnτ (the objective function coefficients, the coefficients of the right-hand-sides and
the constraint matrices), ξτ := (ξ1, . . . , ξτ ) and Fτ is the σ-algebra generated by ξτ , τ = 1, . . . , T .
Fτ represents the available information in stage t. We assume that ξ1 is known in stage 11. With
F1 := {Ω,Ø} and FT := F , no further information has arrived in the first stage whereas all information
is available in the last stage. Also, x := (x1, . . . , xT ) is a vector of (stochastic) decisions and we assume
Xτ ⊆ Rnτ to be polyhedral subsets. Note that the constraints Aτ−1,τxτ−1 + Aτ,τxτ = bτ , xτ ∈ Xτ

mean Aτ−1,τ (ω)xτ−1(ω) + Aτ,τ (ω)xτ (ω) = bτ (ω), xτ (ω) ∈ Xτ for P − a.a. ω ∈ Ω. The requirement
that xτ is Fτ -measurable ensures that xτ depends only on information available in stage τ , i.e., is
nonanticipative. In almost all practical applications the distribution of ξ is discrete, inducing a so-
called scenario tree. The assumption of a discrete distribution makes the MSRP a large-scale linear
program.

Despite the development of solution methods for MSRPs (see, e.g., Birge (1985), Løkketangen and
Woodruff (1996), Lulli and Sen (2004), Escudero et al. (2009), and Pantuso et al. (2015)), an accurate
representation of the discrete distribution and/or the inclusion of all natural stages make many real-life
problems computationally intractable. There exists a number of methods for scenario tree reduction,
including clustering methods, such as Rockafellar and Wets (1991), Dupacová et al. (2003), Heitsch
and Römisch (2003), Kovacevic and Pichler (2015) and Pflug and Pichler (2016). However, even for
MSRPs with a very coarse discretization of uncertainty, the major challenge is often the number of
stages. Many problems have an infinite planning horizon and, consequently, an infinite number of
stages. For these problems it is necessary to rely on a significant length of the planning horizon, i.e.,
on a representative number of stages. Even for many finite-horizon problems the inclusion of all stages
may likewise pose serious tractability issues. In any case, a typical workaround is to reduce the number
of stages. Here, we do this by assuming a deterministic future from a certain stage until the end of
the planning horizon (see also the discussion in Powell (2014)).

Multistage problems are often approximated by two-stage problems in which future uncertainty
is fully disclosed in the second stage. Alternatively, the number of stages is chosen arbitrarily or
determined by the largest problem one can solve. It is relevant for decision-makers to ask: What is the
value of solving the original problem compared to the approximation? or, stated differently: What are
the costs of approximating the original problem by reducing the number of stages? Yet, possibly more

1 We define A0,1 to be a matrix of zeros such that the constraints of stage 1 are A1,1x1 = b1.
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importantly: What is the benefit of including an additional stage in the approximation? The present
paper aims to provide a quantitative answer to these questions.

The existing literature already suggests metrics for evaluating the benefit of solving the original
problem. Given a two-stage stochastic program, the Value of the Stochastic Solution (VSS), gives
the value of solving the stochastic program rather than its Expected Value problem (EV), obtained
by replacing the random parameters of the second stage by their expected values, see Birge (1982).
VSS is computed by fixing the first-stage variables of the original Recourse Problem (RP) to their
values in the EV solution and comparing the objective function value to the optimal value of RP.
Expected values are also used in the context of problems with multiple time horizons, e.g., in such
a way that a tree branches at the weekly level and conditional expectations are used to approximate
the uncertainty at the daily level (see, e.g., Werner et al. (2013) and Kaut et al. (2014) for stochastic
programs with multiple horizons). Alternative strategies for evaluating the quality of an expected
value solution are based on fixing variables at value zero or fixing variables according to their reduced
costs in the EV solution, cf. Crainic et al. (2018). For minimization problems, the fixing of the EV
solution produces an upper bound on the optimal value of RP, making VSS non-negative. For linear
RPs with random right-hand-side only, the optimal value of the EV problem provides a lower bound on
the RP. The EV bound, however, may not be very tight. The Wait-and-See (WS) problem obtained by
relaxing non-anticipativity, gives a lower bound that is as least as good as the EV bound and applies
for general minimization problems. For proofs, see e.g. Birge (1982). The VSS can also be computed
for multistage programs, as shown by Escudero et al. (2007), who use a rolling-horizon version. As
for two-stage problems, this version provides the benefit of solving a MSRP rather than using the
EV solution in every stage. The computation, however, is slightly more complex than for two-stage
problems. The EV is solved in a rolling-horizon framework to account for the fact that in a multistage
problem decisions are made sequentially and conditional on the arrivals of new information. Other
deterministic rolling-horizon approximations to a MSRP are discussed by Maggioni et al. (2014), e.g.
using a reference scenario, and bounding procedures are suggested by Maggioni and Pflug (2016),
Sandikçi and Özaltin (2017), and Maggioni and Pflug (2019). Maggioni et al. (2016) extend these to
stochastic approximations using a subset of reference scenarios.

In this paper, we consider multistage approximations obtained by reducing the number of stages
in the original problem – but without reverting to a deterministic problem – and we evaluate the
benefits of using the solutions in a rolling-horizon procedure. With an infinite planning horizon,
approximations would naturally have the same number of representative stages, even if implemented
in a rolling-horizon framework. Given a finite-horizon problem and a corresponding data set, however,
we aim to evaluate approximations using the same data set. Thus, in a rolling-horizon procedure,
the number of stages of our approximations decreases in every iteration. We introduce the following
metrics: The expected result of using the EV solution (EEV), the value of the EV problem and the
values of two WS approximations. The EV problem can be seen as a stochastic extension of the
deterministic approximation by Escudero et al. (2007) and the EEV can be viewed as an extension of
the rolling-horizon value of the expected value scenario by Maggioni et al. (2014). We show that for
linear minimization problems with random right-hand-side, the EV problem provides a lower bound
that improves with the number of stages and thereby also improves the bound of Escudero et al. (2007).
The same holds for the WS approximations, however, for general linear minimization problems and
with one of the approximations improving the EV bound. In contrast, the upper bound provided
by the EV solution may not improve with the number of stages. Our metrics are used to support
the choice of the number of stages in a MSRP. More specifically, we extend the concept of VSS to
account for stochastic approximations and we define the Marginal Stage Value (MSV) as the value of
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including an additional stage in an approximation. Furthermore, we demonstrate how to use the MSV
in a simple heuristic. The computation of these metrics are illustrated for a case study of a hedging
problem.

The contributions of this paper can be summarized as follows:

• We suggest the concepts of the Expected Value (EV) problem, the Expected result of using the
Expected Value solution (EEV), the Value of the Stochastic Solution (VSS) and the values of two
Wait-and-See (WS) approximations for MSRP, extending the deterministic approximations for
two-stage problems to stochastic approximations for multistage problems obtained by reducing
the number of stages,

• We define the Marginal Stage Value (MSV) to quantify the benefit of including an additional
stage in an approximation to a MSRP and use it to develop a heuristic for choosing the number
of stages,

• We prove the validity of bounds provided by the EV problem and the two WS approximations
and assess their tightness as a function of the number of stages,

• We illustrate that, contrary to intuition, increasing the number of stages of the approximation
does not necessarily foster better solutions.

The organization of the paper is the following. In Section 2 we introduce the value of the Expected
Value problem and the Expected result of using the Expected Value solution and we illustrate the
computation of the two metrics. In Section 3 we provide bounds for the linear MSRP, including two
Wait-and-See bounds. In Section 4 we extend the Value of the Stochastic Solution and introduce the
Marginal Stage Value. In Section 5 we apply the approach to a hedging problem and, finally, we draw
conclusions in Section 6.

2 The Expected Value problem and the Expected result of
using the Expected Value solution

The aim of this section is to extend the concepts of the Expected Value (EV) problem and the Ex-
pected result of using the Expected Value solution (EEV) from two-stage to multistage stochastic
programming.

Consider the original T -stage problem (1). For 1 ≤ T ′ ≤ T , the idea is to solve a number of T ′-stage
stochastic approximations obtained by replacing the random parameters of the remaining stages by
their expected values and to evaluate the value of using the corresponding solutions in the original
problem.

We start by defining the stage-t recourse problem

RP t(x1, . . . , xt−1, ξ
t−1) = min

{
Eξt,T |ξt−1

[
zt(xt, . . . , xT , ξ

t,T ) :=

T∑
τ=t

cτxτ

]∣∣∣Aτ−1,τxτ−1

+Aτ,τxτ = bτ , xτ ∈ Xτ , xτ is Fτ -measurable, τ = t, . . . , T
}
,

where t, . . . , T are the stages and ξt,T := (ξt, . . . , ξT ). This is a subproblem of the original problem
with T − t + 1 stages. The stage-1 problem is in fact the original problem. We denote an optimal
solution to the stage-t problem by xt,T := xt,T (x1, . . . , xt−1, ξ

t−1), where xt,T = (xt,Tt , . . . , xt,TT ). To
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simplify the analysis, we assume complete recourse such that we can ignore feasibility issues. Thus,
the stage-t problem is feasible for any choice of (x1, . . . , xt−1).

We proceed to define the T ′-stage approximation of the stage-t problem

EV t,T
′
(x1, . . . , xt−1, ξ

t−1) = min
{
Eξt,t+T ′−1|ξt−1

[
zt(xt, . . . , xT , ξ̄

t,t+T ′−1) :=

T∑
τ=t

cτxτ

]∣∣∣
Aτ−1,τxτ−1 +Aτ,τxτ = bτ , xτ ∈ Xτ , τ = t, . . . , T,

xτ is Fτ -measurable, τ = t, . . . , t+ T ′ − 1,

xτ is Ft+T ′−1 -measurable, τ = t+ T ′, . . . , T
}
,

where ξ̄t,t+T
′−1 := (ξt, . . . , ξt+T ′−1,Eξt+T ′ |ξt,t+T ′−1 [ξt+T ′ ], . . . ,EξT |ξt,t+T ′−1 [ξT ]). This problem has T ′

stages. Hence, the T ′-stage approximation of the stage-t problem is obtained by replacing the stochastic
vector ξt,T by ξ̄t,t+T

′−1, such that the components of t+T ′, . . . , T become deterministic conditional on
ξt,t+T

′−1. The expectation with respect to ξt,T is therefore replaced by the expectation with respect to
ξt,t+T

′−1. Likewise, the condition “xτ is Fτ -measurable” is replaced by “xτ is Ft+T ′−1 -measurable”
for τ ≥ t+T ′. We denote an optimal solution to the T ′-stage approximation of the stage-t problem by
x̄t,t+T

′−1 := x̄t,t+T
′−1(x1, . . . , xt−1, ξ

t−1) (indicating the stages at which the random variables are not

replaced by their expectation), where x̄t,t+T
′−1 = (x̄t,t+T

′−1
t , . . . , x̄t,t+T

′−1
T ). Note that EV t,T

′
= RP t

and x̄t,t+T
′−1 = xt,T for t ≥ T − T ′ + 1, that is, the T ′-stage approximation is the same as the

stage-t problem when the number of stages is less than or equal to T ′. In the following, we refer
interchangeably to EV t,T

′
as the optimal value of the T ′-stage approximation and the optimization

problem itself.
In the two-stage case, EV 1,1 corresponds to the Expected Value (EV) problem, see Birge (1982).

For multistage problems, EV t,1 corresponds to the optimal value of the average scenario model by
Escudero et al. (2007), and so, we extend their deterministic approximations to include stochastic
problems. As it will be clear from the following section, we thereby improve the lower bounds provided
by the approximations. Also, using the terminology of Powell (2014), an approximation in our context
corresponds to a stochastic lookahead model but without the reduction of the planning horizon, and is
similar to a stage aggregation lookahead model, although possibly with more than two stages.

In a multistage problem, decisions are made sequentially and conditional on the arrivals of new
information. To account for this, we use the approximations in a rolling-horizon framework. In
particular, upon reaching a given stage, new information arrives and conditional decisions are made
on the basis of a new approximation. We store only the first component of the solution until the
approximation is the same as the original problem and we store all components of the solution. More
formally, we solve T ′-stage approximations of the stage-t problems for t = 1, . . . , T − T ′, recalling
that the T ′-stage approximations of the stage-t problems for t = T − T ′ + 1, . . . , T are in fact the
same as the stage-t problems. For t = 1, . . . , T − T ′, the vector ξt becomes known and we solve the
T ′-stage approximations of the stage-t problems to obtain the optimal solutions x̄t,t+T

′−1. We let

x̄t,t+T
′−1

t be the first component and store only this component of the solution. For t = T − T ′ + 1,
the vector ξT−T ′+1 likewise becomes known and we solve the stage-T − T ′ + 1 problem to obtain
the optimal solution xT−T

′+1,T . We store all components of this solution. The result is a solution

(x̄1,T ′

1 , . . . , x̄T−T
′,T−1

T−T ′ , xT−T
′+1,T

T−T ′+1 , . . . , xT−T
′+1,T

T ). The procedure is as follows:

Procedure 1 Rolling-horizon T ′-stage approximations
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Step 1: Solve (EV 1,T ′) with ξ̄1,T ′ = (ξ1, . . . , ξT ′ ,Eξ1+T ′ |ξ1,T ′ [ξ1+T ′ ], . . . ,EξT |ξ1,T ′ [ξT ]), where ξ1 is

known, and let an optimal solution be x̄1,T ′ := x̄1,T ′(ξ1,1). Store x̄1,T ′

1 .

Step t: For all (x̄1,T ′

1 , . . . , x̄t−1,t+T ′−2
t−1 , ξt−1), solve (EV t,T

′
) with ξt,t+T

′−1 = (ξt, . . . , ξt+T ′−1,
Eξt+T ′ |ξt,t+T ′−1 [ξt+T ′ ], . . . ,EξT |ξt,t+T ′−1 [ξT ]), where ξt is known, and let an optimal solution be

x̄t,t+T
′−1 := x̄t,t+T

′−1(x̄1,T ′

1 , . . . , x̄t−1,t+T ′−2
t−1 , ξ1,t). Store x̄t,t+T

′−1
t . Let t := t+ 1.

Step T − T ′ + 1: For all (x̄1,T ′

1 , . . . , x̄T−T
′,T−1

T−T ′ , ξ1,T−T ′), solve (RPT−T
′+1) with ξT−T

′+1,T =

(ξT−T ′+1, . . . , ξT ), where ξT−T ′+1 is known, and let an optimal solution be xT−T
′+1,T :=

xT−T
′+1,T (x̄1,T ′

1 , . . . , x̄T−T
′,T ′

t−1 , ξ1,T−T ′+1). Store xT−T
′+1,T .

Example 1 Consider a two-stage approximation of the four-stage problem in Figure 1, for which
the discrete stochastic process is represented by a scenario tree. Hence, T = 4 and T ′ = 2. To simplify
notation, assume that ξ1, . . . , ξ4 are mutually independent. Then, the procedure is:

Step 1: Solve the two-stage approximation (EV 1,2) rooted in the first-stage node and with ξ̄1,2 =
(ξ1, ξ2,E[ξ3],E[ξ4]). Let an optimal solution be x̄1,2 := x̄1,2(ξ1).

Step 2: For ξ1 and corresponding x̄1,2
1 , solve (EV 2,2) rooted in a second-stage node and with ξ̄2,3 =

(ξ2, ξ3,E[ξ4]) and let an optimal solution be x̄2,3 := x̄2,3(x̄1,2
1 , ξ1, ξ2).

Step 3: For all (ξ1, ξ2) and corresponding (x̄1,2
1 , x̄2,2

2 ), solve (RP 3) rooted in a third-stage node with
ξ3,4 = (ξ3, ξ4) and let an optimal solution be x3,4 := x3,4(x̄1,2

1 , x̄2,3
2 , ξ1, ξ2, ξ3).

Figure 1: Rolling-horizon two-stage approximations of a four-stage problem. The numbers in circles
are the steps of the rolling-horizon procedure. The four-stage scenario tree on the right illustrates the
original unfolding of the random parameters and numbers beneath the node are indices.

It may be instructive to index the nodes of the scenario tree. In Figure 1, we index the nodes of
right-most four-stage scenario tree by 0, . . . , 14. The rolling-horizon two-stage approximations work as
follows. In Step 1, ξ1 is known. We consider the first-stage node and form a two-stage scenario tree
rooted in this node by replacing the random variables in stages 3 and 4 by their expected values. We
solve the two-stage approximation and store its first-stage decision, x̄0. In Step 2, we fix x̄0 and both
ξ1 and ξ2 are known. For each second-stage node n (i.e., each realization of the second-stage random
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variables) we form a two-stage scenario sub-tree rooted in node n by replacing the random variables
in stage 4 by their expected values. These sub-trees are conditional on the information available in
their respective second-stage nodes, including their history. We solve the two-stage approximations
and store the decisions of the second stage, x̄n, n = 1, 2. Note that these decisions are, in general,
different from those of the original four-stage problem. Finally, in Step 3, we fix x̄n, n = 0, 1, 2 and
ξ1, ξ2 and ξ3 are now known. For each third-stage node n, the scenario sub-tree rooted in node n
is two-stage, and so, we solve the corresponding subproblem of the original problem and store the
decisions xn, n = 3, . . . , 14. The result is a solution (x̄0, x̄1, x̄2, x3, . . . , x14).

To evaluate the quality the T ′-stage approximations, we consider the value of using the solution

(x̄1,T ′

1 , . . . , x̄T−T
′,T−1

T−T ′ , xT−T
′+1,T

T−T ′+1 , . . . , xT−T
′+1,T

T ) in the original problem. We therefore define

EEV t,T
′
(x1, . . . , xt−1, ξ

t−1) = Eξt,T |ξt−1

[
zt(x̄t,T

′+t−1
t , . . . , x̄T−T

′,T−1
T−T ′ , xT−T

′+1,T
T−T ′+1 , . . . , xT−T

′+1,T
T , ξt,T )

]
,

where EEV t,T
′

= RP t for t ≥ T − T ′ + 1. In the two-stage case, EEV 1,1 corresponds to the Expected
result of using the Expected Value solution (EEV), see Birge (1982). For multistage problems, EEV 1,1

is equivalent to the Rolling-Horizon Value of the Reference Scenario (RHVRS) introduced by Maggioni
et al. (2014), using the mean as the reference scenario. As such, we extend the rolling-horizon value
from a deterministic reference problem to more advanced stochastic approximations. Notice also that,
consistently with Powell (2014), approximate solutions are evaluated in the original objective function.

3 Bounds

This section is devoted to upper and lower bounds for the MSRP. As for two-stage stochastic pro-
gramming, the multistage extensions of the EV problem and the EEV provide bounds on the optimal
value of the original problem. Since the EV bound may not be very tight, we also suggest two WS
approximations and assess their tightness.

We start with the Expected Value problem. For linear MSRP with random right-hand-sides we
show that the optimal value of a T ′-stage approximation, EV 1,T ′ , is a lower bound on that of the
original problem, RP 1. The more stages in the approximation, the better this lower bound.

Proposition 1 Assume that the objective function coefficients and the constraint matrices are
fixed such that ξτ collates the components of bτ . Let 1 ≤ t ≤ T . For all (x1, . . . , xt−1, ξ

t−1),

EV t,T
′
(x1, . . . , xt−1, ξ

t−1) ≤ EV t,T
′+1(x1, . . . , xt−1, ξ

t−1)

for T ′ = 1, . . . , T − 1 and, in particular, EV t,T
′
(x1, . . . , xt−1, ξ

t−1) ≤ EV t,T−t+1(x1, . . . , xt−1, ξ
t−1) =

RP t(x1, . . . , xt−1, ξ
t−1) for T ′ ≤ T − t+ 1.

Proof: For ease of exposition, we omit the constraints in the optimization problems below. For
the optimal solution x̄t,t+T

′
to the T ′ + 1-approximation EV t,T

′+1 and for all ξt,t+T
′

conditional on
ξt,t+T

′−1

Eξt,t+T ′−1|ξt−1

[
zt(x̄t,t+T

′

t , . . . , x̄t,t+T
′

T , ξ̄t,t+T
′
)
]
≥ min
xt,...,xT

Eξt,t+T ′−1|ξt−1

[
zt(xt, . . . , xT , ξ̄

t,t+T ′)
]
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and, hence,

EV t,T
′+1(x1, . . . , xt−1, ξ

t−1) = Eξt,t+T ′ |ξt,t+T ′−1

[
Eξt,t+T ′−1|ξt−1

[
zt(x̄t,t+T

′

t , . . . , x̄t,t+T
′

T , ξ̄t,t+T
′
)
]]

≥ Eξt,t+T ′ |ξt,t+T ′−1

[
min

xt,...,xT
Eξt,t+T ′−1|ξt−1

[
zt(xt, . . . , xT , ξ̄

t,t+T ′)
]]
.

The value function of the minimization problem is convex in its right-hand-side ξt+T ′ , and hence, by
Jensen’s inequality

Eξt,t+T ′ |ξt,t+T ′−1

[
min

xt,...,xT
Eξt,t+T ′−1|ξt−1

[
zt(xt, . . . , xT , ξ̄

t,t+T ′)
]]

≥ min
xt,...,xT

Eξt,t+T ′−1|ξt−1

[
zt(xt, . . . , xT ,Eξt,t+T ′ |ξt,t+T ′−1 [ξ̄t,t+T

′
])
]]

= EV t,T
′
(x1, . . . , xt−1, ξ

t−1).

�

Note that Proposition 1 holds for problems with random right-hand sides, as is also the case for
two-stage problems, see Birge (1982). With randomess only in the right-hand side, the convexity of
the second-stage value function allows for the application of Jensen’s inequality.

We now define two other T ′-stage approximations of the stage-t problem. The first is obtained by
relaxing non-anticipativity in stages t, . . . , T − T ′:

WS
t,T ′

(x1, . . . , xt−1, ξ
t−1) =Eξt,T |ξT−T ′+1,T

[
min

{
EξT−T ′+1,T |ξt−1

[
zt(xt, . . . , xT , ξ

t,T ) :=

T∑
τ=1

cτxτ
]∣∣∣

Aτ−1,τxτ−1 +Aτ,τxτ = bτ , xτ ∈ Xτ , , τ = t, . . . , T

xτ is FT−T ′+1 -measurable, τ = t, . . . , T − T ′,

xτ is Fτ -measurable, τ = T − T ′ + 1, . . . , T
}]
.

The second is obtained by relaxing non-anticipativity in stages t+ T ′ − 1, . . . , T :

WSt,T
′
(x1, . . . , xt−1, ξ

t−1) = min
{
Eξt,T |ξt−1

[
zt(xt, . . . , xT , ξ

t,T ) :=

T∑
τ=1

cτxτ
]∣∣∣

Aτ−1,τxτ−1 +Aτ,τxτ = bτ , xτ ∈ Xτ , , τ = t, . . . , T

xτ is Fτ -measurable, τ = t, . . . , t+ T ′ − 2,

xτ is FT -measurable, τ = t+ T ′ − 1, . . . , T
}
.

We denote optimal solutions to the two T ′-stage approximations by x̄T−T
′+1,T and xt,t+T

′−2, respec-

tively (indicating the stages at which non-anticipativity is not relaxed). Note that WS
t,T ′

= WSt,T
′

=

RP t for t ≥ T − T ′ + 1. In the two-stage case, WS
1,1

and WS1,1 correspond to the Wait-and-See
(WS) problem, see Birge (1982).

Example 2 Consider the four-stage problem of Example 1. Figure 2 illustrates the three-stage

approximations, EV 1,3,WS
1,3

and WS1,3.

8



Figure 2: Three-stage approximations of the four-stage problem in Figure 1.

For the general MSRP, the optimal values of the T ′-stage approximation, WS
1,T ′

and WS1,T ′ , are
likewise lower bounds on that of the original problem, RP 1. Also, the more stages in the approxima-
tions, the better these lower bounds.

Proposition 2 Let 1 ≤ t ≤ T . For all (x1, . . . , xt−1, ξ
t−1),

WS
t,T ′

(x1, . . . , xt−1, ξ
t−1) ≤WS

t,T ′+1
(x1, . . . , xt−1, ξ

t−1)

for T ′ = 1, . . . , T − 1 and, in particular, WS
t,T ′

(x1, . . . , xt−1, ξ
t−1) ≤WS

t,T−t+1
(x1, . . . , xt−1, ξ

t−1) =

RP t(x1, . . . , xt−1, ξ
t−1) for T ′ ≤ T − t+ 1. The same holds with WS

t,T ′

replaced by WSt,T
′
.

Proof: Observe that WS
t,T ′

and WSt,T
′

are obtained from WS
t,T ′+1

and WSt,T
′+1 by relaxing

non-anticipativity in stages T − T ′ and t+ T ′ − 1, respectively.

The lower bound EV t,T
′

is readily available from Procedure 1, as opposed to WS
t,T ′

and WSt,T
′

that involve solving (stochastic) approximations. Whereas WS
t,T ′

is computed by solving a number
of subproblems that are significantly smaller than RP t, the problem WSt,T

′
has the same size as RP t

(although a more simple structure). However, the lower bound provided by WSt,T
′

is guaranteed to
be at least as good as EV t,T

′
.

Proposition 3 Assume that the objective function coefficients and the constraint matrices are
fixed such that ξτ collates the components of bτ . Let 1 ≤ t ≤ T . For all (x1, . . . , xt−1, ξ

t−1),

EV t,T
′
(x1, . . . , xt−1, ξ

t−1) ≤WSt,T
′
(x1, . . . , xt−1, ξ

t−1)

for T ′ = 1, . . . , T − 1.

Proof: For ease of exposition, we omit the constraints in the optimization problems below. For
the optimal solution xt,t+T

′−2 to the T ′-stage approximation WSt,T
′

and for all ξt,t+T
′

conditional on
ξt,t+T

′−1

Eξt,t+T ′−1|ξt−1

[
zt(xt,t+T

′−2
t , . . . , xt,t+T

′−2
T , ξt,T )

]
≥ min
xt,...,xT

Eξt,t+T ′−1|ξt−1

[
zt(xt, . . . , xT , ξ

t,T )
]

9



and, hence,

WSt,T
′
(x1, . . . , xt−1, ξ

t−1) = Eξt+T ′,T |ξt,t+T ′−1

[
Eξt,t+T ′−1|ξt−1

[
zt(xt,t+T

′−2
t , . . . , xt,t+T

′−2
T , ξt,T )

]]
≥ Eξt+T ′,T |ξt,t+T ′−1

[
min

xt,...,xT
Eξt,t+T ′−1|ξt−1

[
zt(xt, . . . , xT , ξ

t,T )
]]
,

where the first equality uses that Eξt,T |ξt,t+T ′−1 [·] = Eξt+T ′,T |ξt,t+T ′−1 [·]. The minimization problem is

convex in its right-hand-side ξt,T , and hence, by Jensen’s inequality

Eξt+T ′,T |ξt,t+T ′−1

[
min

xt,...,xT
Eξt,t+T ′−1|ξt−1

[
zt(xt, . . . , xT , ξ

t,T )
]]

≥ min
xt,...,xT

Eξt,t+T ′−1|ξt−1

[
zt(xt, . . . , xT ,Eξt+T ′,T |ξt,t+T ′−1 [ξt,T ])

]]
= EV t,T

′
(x1, . . . , xt−1, ξ

t−1),

where the last equality follows since Eξt+T ′,T |ξt,t+T ′−1 [·] = Eξ̄t+T ′,T |ξt,t+T ′−1 [·] �

We proceed with the Expected value of using the Expected Value solution. For the general MSRP,
the optimal solutions to the stage-T ′ approximations obtained by Procedure 1 provide an upper bound,
EEV 1,T ′ , on the optimal value of the original problem, RP 1:

Proposition 4 Let 1 ≤ t, T ′ ≤ T . For all (x1, . . . , xt−1, ξ
t−1),

RP t(x1, . . . , xt−1, ξ
1,t) ≤ EEV t,T

′
(x1, . . . , xt−1, ξ

1,t).

Proof: Observe that EEV t,T
′

and RP t are obtained by solving the same MSRP, with the exception
that the variables of stages 1, . . . , T − T ′ are fixed in the computation of EEV t,T

′
.

Unfortunately, examples show that the upper bound does not necessarily improve with the number
of stages, see Section 5. That is, increasing the number of stages does not necessarily produce better
solutions. We do, however, obtain the following:

Corollary 1 Let 1 ≤ t, T ′ ≤ T . For all (x1, . . . , xt−1, ξ
t−1),

WSt,T
′
(x1, . . . , xt−1, ξ

t−1) ≤ RP t(x1, . . . , xt−1, ξ
t−1) ≤ min

τ=1,...,T ′
EEV t,τ (x1, . . . , xt−1, ξ

t−1).

Proof: By Propositions (2) and (4), WSt,T
′ ≤ RP t ≤ EEV t,τ for all τ = 1, . . . , T ′.

If the original T -stage problem is hard to solve or even intractable these bounds become useful.
The computations of EV 1,T ′ , W̄S1,T ′ ,WS1,T ′ and EEV 1,T ′ involve the solution to problems with at
most T ′ stages, which are hopefully significantly easier to solve than the original T -stage problem.

4 The Marginal Stage Value

The Expected result of using the Expected Value solution can be used to support the choice of the
number of stages in an approximation. For this purpose, we introduce the following:

10



Definition 1. The Value of the Stochastic Solution (VSS) to the stage-t problem compared to a T ′-
stage approximation is the quantity:

V SSt,T
′

= min
τ=1,...,T ′

EEV t,τ (x1, . . . , xt−1, ξ
t−1)−RP t

Definition 2. The Marginal Stage Value (MSV) for a T ′-stage approximation is the quantity:

MSV t,T
′

= V SSt,T
′−1 − V SSt,T

′
= min
τ=1,...,T ′−1

EEV t,τ − min
τ=1,...,T ′

EEV t,τ

It follows from Definition 1 and Definition 2 that V SSt,T
′ ≥ 0 and MSV t,T

′ ≥ 0. Moreover,
MSV t,T

′
> 0 if and only if EEV t,T

′
< EEV t,τ for τ = 1, . . . , T ′ − 1, i.e., the solution to the T ′-stage

approximation improves the objective function value of the original problem.
We propose the following heuristic for choosing the number of stages, using the MSV. Let M ∈ R+

and m ∈ Z+ be some pre-specified threshold and iteration counter, respectively. The procedure is
then:

Procedure 2 Heuristic for choosing the number of stages

Step 1: Use the rolling-horizon τ -stage approximation and compute EEV 1,τ for τ = 1, . . . ,m+1. Let
MSV 1,1 = 0 and compute MSV 1,τ for τ = 2, . . . ,m+ 1.

Step T ′: If MSV 1,τ < M for τ = T ′, . . . , T ′+m−1, stop. Use the rolling-horizon T ′−1-stage approx-
imation. Otherwise, use the rolling-horizon T ′ + m-stage approximation, compute EEV 1,T ′+m

and MSV 1,T ′+m. Let T ′ := T ′ + 1.

The idea is that we solve approximations with an increasing number of stages. In step T ′, we
compute the rolling-horizon T ′-stage approximation, compute EEV 1,T ′ and update MSV 1,T ′ . If the
approximation fails to improve the objective function value of the original problem by at least M
during m subsequent iterations, we stop the heuristic.

5 Tests on a portfolio replication problem

In this section we illustrate the rolling-horizon solution of the EV problems, the solutions of the two WS
approximations, and the computation of the EEV, VSS and MSV for a problem of portfolio replication,
see e.g. Dempster and Thompson (2002). Rather than solving a problem of real-life size and detail,
the purpose of our computational study is to illustrate how the approximations and bounds relate to
the original problem and its optimal value. To do this, we use a problem formulation and instances
that allow for optimal solutions within acceptable time.

An investor aims to track, i.e. replicate, the value of a target portfolio by allocating an initial
budget B to a set of investment instruments I and re-allocate at discrete points in time t = 1, . . . , T
such as to minimize the average absolute tracking error over time. Such problem arises, for example,
in the course of hedging in an incomplete market. The value of the target portfolio is random and
represented by a one-dimentional stochastic process {G̃t, t = 1, . . . , T}. The returns of the investment
instruments are likewise random and follow a (possibly correlated) multi-dimentional stochastic process
{R̃it, i ∈ I, t = 1, . . . , T}.

11



Table 1: Return characteristics of the investment assets.

Asset Mean StD Skewness Kurtosis Risk Premium Vol. Clumping Mean Reversion

Cash 4.33 0.94 0.8 2.62 0.0 0.3 0.2
Bonds 5.91 0.82 0.49 2.39 0.0 0.3 0.2
D. Stocks 7.61 13.38 -0.75 2.93 0.3 0.3 0.0
F. Stocks 8.09 15.70 -0.74 2.97 0.3 0.3 0.0

We formulate the tracking problem as a linear T -stage stochastic recourse problem. Assuming
discrete distributions, the realizations of the stochastic processes can be represented by a scenario
tree on a set of nodes N . Each node n ∈ N is characterized by a realization Gn of the target value
and realizations Rin, i ∈ I of the asset returns. For t = 1, . . . , T , we let Nt be the set of nodes
at stage t. Moreover, 0 denotes the root node with probability p0 = 1 and, for n ∈ N\{0}, a(n)
denotes the predecessor of node n and pn denotes the probability, with

∑
n∈Nt pn = 1, t = 1, . . . , T

and
∑
m:a(m)=n pm = pn, n ∈ N\NT . The decision variables xin represent the amount allocated to

asset i in node n ∈ N and y+
in and y−in represent excess and deficit of the target, respectively.

The linear MSRP is given by:

min
1

T

∑
n∈N

pn(y−n + y+
n ) (2a)

s.t.
∑
i∈I

xi0 ≤ B, (2b)∑
i∈I

xin −
∑
i∈I

Rinxi,a(n) = 0, n ∈ Nt, t = 2, . . . , T, (2c)∑
i∈I

xin − y+
n + y−n = Gn, n ∈ Nt, t = 2, . . . , T (2d)

xin ≥ 0, i ∈ I, n ∈ N , (2e)

y+
in, y

−
in ≥ 0, i ∈ I, n ∈ N . (2f)

The objective function (2a) accumulates the average expected absolute tracking error over the planning
horizon. Constraint (2b) ensures that no more than the initial budget is allocated to assets, constraints
(2c) state that reallocation is possible at every stage, and (2d) that the investor is to track, by means
of its portfolio, the value of the target portfolio. Constraints (2e) - (2f) ensure non-negativity of the
decision variables.

We use the investment instruments described in Høyland and Wallace (2001). Four asset classes
are considered, namely Bonds, Cash, Domestic Stocks and Foreign Stocks. The random returns of the
assets are described by their first four marginal moments and their correlations as reported in Table 1
and Table 2, respectively. In addition to their moments, the asset returns are characterized by their
risk premium, volatility clumping and mean reversion (see Høyland and Wallace (2001) for details),
also reported in Table 1. We generate returns by means of the moment-matching heuristic introduced
by Høyland et al. (2003). The idea behind the moment-matching heuristic is as follows: First, a
number of discrete univariate random variables are constructed, each having a given specification of
the first four moments. Then, the random variables are transformed to a random vector having a
given correlation matrix. However, since this transformation distorts the third and fourth marginal
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Table 2: Correlations between the returns of the investment assets.

Bonds D. Stocks Cash F. Stocks

Cash 1.00 0.60 -0.20 -0.10
Bonds 1.00 -0.30 -0.20
D. Stocks 1.00 0.60
F. Stocks 1.00

moments, the heuristic starts out with specifications of these two moments different from their targets,
and such that final marginals have the correct moments. For further details see Høyland et al. (2003).

For each realization at a given stage, the heuristic is used to generate conditional distributions for
the following stage, characterized by their four marginal moments and correlations, and taking into
account that mean and standard deviation are stage-dependent due to volatility clumping and mean
reversion. Furthermore, we assume an initial budget corresponding to the initial value of the target
portfolio, i.e. B = G0 = 55 thousand dollars. For every stage t = 2, . . . , T , realized values of the target
portfolio, Gn, n ∈ Nt, are sampled from a triangular distribution, T [G0−κ,G0, G0 +κ], where G0 = 55
thousand dollars represents the mode and G0− κ and G0 + κ the lower and upper limits, respectively.
We test the values of κ = 10 and 15 when the target mode and limits are constant and κ = 10 when
the target grows at the same rate as the average asset return, that is 6.485%. The instances are also
made available online2.

We begin by computing the EV,WS,EEV, V SS and MSV for the special case of the tracking
problem with fixed asset returns. This setting allows us to obtain a version of (2) with random right-
hand-side only, and thus, to illustrate the validity of the EV bound. We let Rin = Mi for each i ∈ I
and n ∈ N , where Mi is the mean return of asset i reported in Table 1. For this case, the scenario
tree is obtained by branching five times per stage, with each branch holding a target value sampled
from the underlying distribution. Consequently, the resulting scenario trees count 5T−1 scenarios, for
T = 4, 5, 6. Table 3 shows the results for the case with fixed asset returns and κ = 10, Table 5 with
κ = 10 and a target growth of 6.485% per stage, and Table 4 shows the results with κ = 15.

Table 3: Results for the tracking problem with fixed asset returns and G̃t ≈ T [45, 55, 65], t = 2, . . . , T ,
varying the number of stages T in the original problem and T ′ in the approximation. V SS1,T ′ [%]
represents the percentage increase in objective value generated by the approximation and is computed
as 100× V SS1,T ′/RP 1. MSV 1,T ′ [%] represents the percentage increase in the value of the stochastic
solution by including stage T ′ and is computed as 100×MSV 1,T ′/V SS1,T ′−1. The remaining values
are expressed in thousands of dollars.

T T ′ EV 1,T ′ WS1,T ′ WS
1,T ′

RP 1 EEV 1,T ′ V SS1,T ′ V SS1,T ′ [%] MSV 1,T ′ MSV 1,T ′ [%]

4

1 9.00 13.41 11.66

13.72

14.03 0.31 2.25 0.00 0.00
2 11.82 13.52 11.95 14.16 0.31 2.25 0.00 0.00
3 13.26 13.72 12.34 13.72 0.00 0.00 0.31 100.00
4 13.72 13.72 13.72 13.72 0.00 0.00 0.00 0.00

5

1 14.10 18.97 17.15

19.25

19.34 0.09 0.45 0.00 0.00
2 15.87 19.13 17.39 20.75 0.09 0.45 0.00 0.00
3 18.08 19.15 18.06 19.80 0.09 0.45 0.00 0.00
4 18.98 19.25 18.75 19.27 0.01 0.06 0.08 86.82

2The instances are available at the following address https://sid.erda.dk/sharelink/ecTlLZXJDP.
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5 19.25 19.25 19.25 19.25 0.00 0.00 0.01 100.00

6

1 20.78 26.07 24.31

26.27

26.90 0.63 2.39 0.00 0.00
2 21.05 26.15 24.53 26.65 0.38 1.44 0.25 39.73
3 23.66 26.22 24.84 26.70 0.38 1.44 0.00 0.00
4 25.54 26.22 25.32 26.37 0.10 0.38 0.28 73.28
5 26.16 26.27 25.90 26.29 0.02 0.06 0.09 84.42
6 26.27 26.27 26.27 26.27 0.00 0.00 0.02 100.00

We observe from Table 3 that the lower bound provided by the expected value problem EV 1,T ′

improves with the number of stages T ′ as proven in Proposition 1 and that the improvements are
significant. However, the bounds provided by including only the first stages are not very tight. The
two-stage approximations, for example, result in gaps of 17-24% between the upper and lower bounds,
whereas the three-stage approximations have gaps of 3-11%. To obtain gaps below 5% for this specific
problem, one should include 70-80% of the stages in the original problem.

The lower bounds provided by the wait-and-see approximations WS1,T ′ ,WS
1,T ′

likewise improve
with the number of stages T ′ as proven in Proposition 2. We also confirm that the bound WS1,T ′ is
always at least as good as EV 1,T ′ . In fact, when using the bound WS1,T ′ , T ′ = 1 results in gaps of
1.9-4.4% between the upper and lower bounds, whereas T ′ = 2 produces gaps of 1.1-7.8% (the reason
that the gap does not necessarily decrease with the number of stages is that the upper bound does not
always decrease, see below). Moreover, in this specific application, the last few stages are more or less
redundant, with gaps around 0.1% for T ′ = T − 1 and T = 5 or 6 and a gap of 0.6% for T ′ = T − 2
and T = 6.

While the size of the WS1,T ′ approximation is comparable to that of the original problem 3, WS
1,T ′

consists of a number subproblems that are typically significantly smaller. As an example, see Figure 2.
The WS1,3 approximation includes the same number of leaf nodes/scenarios as the four-stage problem

in Figure 1 (though the non-anticipativity constraints in the third stage are relaxed), whereas WS
1,3

consists of two stochastic but smaller subproblems. The tightness of this bound is slightly better than
EV 1,T ′ when including only the first stages in the approximations and otherwise comparable, with the
gaps of the two-stage and three-stage approximations being 8-16% and 7-10%, respectively.

In contrast to the lower bounds, the upper bounds do not always improve with the number of
stages. In Table 3, we notice that EEV 1,2 > EEV 1,1 for T = 4 and 5, meaning that there is a loss
from including the second stage in the deterministic problem and implying that MSV 1,2 = 0. For
T = 5, we likewise observe that MSV 1,3 = 0, and thus, the deterministic problem is also at least as
good as the three-stage approximation. Even though the quality of the solutions generally improves
with the number of stages, the progression is often erratic. For T = 6, one gains from including the
second and fourth stage, but not the third. This erratic behavior likewise applies to problems with
longer planning horizons, as seen in Table 9 in Appendix A. For the T = 15, the solution improves
with the inclusion of the second, fourth, sixth and then ninth and tenth stage, whereas nothing is
gained from the addition of the fifth stage to a four-stage approximation. Thus, contrary to intuition,
including a few more stages in the approximation does not necessarily foster better solutions.

In spite of an erratic progression, we observe that MSV 1,1 = MSV 1,2 = 0 whereas EEV 1,2 >
EEV 1,3 and thus MSV 1,3 > 0 for T = 4, MSV 1,1 = MSV 1,2 = MSV 1,3 = 0 whereas EEV 1,3 >
EEV 1,4 and thus MSV 1,4 > 0 for T = 5, and MSV 1,1,MSV 1,2,MSV 1,4,MSV 1,5 > 0 for T = 6. We
conclude that for this specific problem, one should either exclude the last few stages of the original

3 Assuming a scenario formulation is used instead of the node formulation in (2), the difference is the number of
non-anticipativity constraints.
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problem, while facing an accompanying computational effort, or include only the first few stages,
accepting a lower quality of the resulting solution. In particular, one should either use a deterministic
approximation for T = 4 and 5 and a two-stage approximation for T = 6 (use the heuristic with
M = 0.01 and m = 1) or approximations with T ′ − 1 stages for all T = 4, 5 and 6 (use the heuristic
with M = 0.05 and m = 3).

Table 4: Results for the tracking problem with fixed asset returns and G̃t ≈ T [40, 55, 70], t = 2, . . . , T ,
varying the number of stages T in the original problem and T ′ in the approximation. V SS1,T ′ [%]
represents the percentage increase in objective value generated by the approximation and is computed
as 100× V SS1,T ′/RP 1. MSV 1,T ′ [%] represents the percentage increase in the value of the stochastic
solution by including stage T ′ and is computed as 100×MSV 1,T ′/V SS1,T ′−1. The remaining values
are expressed in thousands of dollars.

T T ′ EV 1,T ′ WS1,T ′ WS
1,T ′

RP 1 EEV 1,T ′ V SS1,T ′ V SS1,T ′ [%] MSV 1,T ′ MSV 1,T ′ [%]

4

1 8.94 17.19 14.44

17.70

18.11 0.40 2.28 0.00 0.00
2 13.98 17.45 14.96 19.10 0.40 2.28 0.00 0.00
3 16.53 17.70 15.76 18.06 0.36 2.01 0.05 11.93
4 17.70 17.70 17.70 17.70 0.00 0.00 0.36 100.00

5

1 14.15 23.50 20.75

24.16

24.18 0.02 0.06 0.00 0.00
2 17.30 23.82 21.27 25.90 0.02 0.06 0.00 0.00
3 21.09 23.92 22.31 24.82 0.02 0.06 0.00 0.00
4 23.31 24.16 22.89 24.16 0.00 0.00 0.02 100.00
5 24.16 24.16 24.16 24.16 0.00 0.00 0.00 0.00

6

1 20.88 31.02 28.59

31.61

32.79 1.18 3.74 0.00 0.00
2 22.22 31.18 29.05 33.01 1.18 3.74 0.00 0.00
3 26.26 31.37 29.53 33.61 1.18 3.74 0.00 0.00
4 29.74 31.42 30.35 31.80 0.19 0.61 0.99 83.73
5 30.97 31.61 30.90 31.62 0.01 0.04 0.18 93.33
6 31.61 31.61 31.61 31.61 0.00 0.00 0.01 100.00

We proceed by analyzing the impact of more uncertainty. When the variance of the target increases,
tracking the target becomes more difficult, and the tracking error becomes larger, as evidenced by a
higher RP 1 in Table 4 than in Table 3. In many cases, this raises the V SS1,T ′ and the marginal stage
value for T ′ with MSV 1,T ′ > 0. However, it may not be the same T ′ for which MSV 1,T ′ > 0 in
Table 4 as in Table 3. In particular, no improvement is obtained by including the second stage for any
T . Furthermore, for T = 4, the inclusion of the fourth stage provides a significant improvement to the
quality of the solution. Thus, the more uncertainty in the form of an increase in variance, the more
stages may have to be included in an approximation.

Table 5: Results for the tracking problem with fixed asset returns and G̃t ≈ T [45(1 + ξ)t−1, 55(1 +
ξ)t−1, 65(1 + ξ)t−1], t = 2, . . . , T , and ξ = 6.485%, varying the number of stages T in the original
problem and T ′ in the approximation. V SS1,T ′ [%] represents the percentage increase in objective value
generated by the approximation and is computed as 100× V SS1,T ′/RP 1. MSV 1,T ′ [%] represents the
percentage increase in the value of the stochastic solution by including stage T ′ and is computed as
100×MSV 1,T ′/V SS1,T ′−1. The remaining values are expressed in thousands of dollars.

T T ′ EV 1,T ′ WS1,T ′ WS
1,T ′

RP 1 EEV 1,T ′ V SS1,T ′ V SS1,T ′ [%] MSV 1,T ′ MSV 1,T ′ [%]

4

1 0.00 9.19 7.95

10.63

10.82 0.20 1.86 0.00 0.00
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2 4.80 9.84 9.00 10.66 0.04 0.33 0.16 82.01
3 7.88 10.63 9.65 10.67 0.04 0.33 0.00 0.00
4 10.63 10.63 10.63 10.63 0.00 0.00 0.04 100.00

5

1 0.00 11.78 10.70

14.34

14.62 0.28 1.96 0.00 0.00
2 4.81 12.73 11.80 14.43 0.09 0.63 0.19 67.91
3 8.13 13.55 12.86 14.38 0.04 0.30 0.05 52.94
4 11.58 14.34 13.40 14.35 0.00 0.02 0.04 92.71
5 14.34 14.34 14.34 14.34 0.00 0.00 0.00 0.00

6

1 0.00 14.68 13.66

18.26

18.67 0.41 2.24 0.00 0.00
2 4.81 15.52 14.85 18.45 0.19 1.04 0.22 53.42
3 8.15 16.60 15.86 18.33 0.07 0.36 0.12 65.16
4 11.87 17.40 16.84 18.26 0.00 0.00 0.07 100.00
5 15.25 18.26 17.33 18.26 0.00 0.00 0.00 0.00
6 18.26 18.26 18.26 18.26 0.00 0.00 0.00 0.00

In Table 5, we investigate growth in the random target, assuming the initial target distribution
remains unchanged but its parameters grow over time at the same rate as the average asset return.
Thus, the mean and standard deviation grow at this rate. When comparing to the results in Table 3,
we would expect the RP to decrease as a result of the same growth in asset returns and the mean
target, decreasing the tracking error. This may also reduce the VSS. At the same time, we would
expect the VSS to increase due to a larger variance of the target and thereby a larger tracking error.
For T = 4 and 6, the result is smaller V SS1,T ′ and MSV 1,T ′ > 0 for most T ′, whereas for T = 5,
V SS1,T ′ and MSV 1,T ′ > 0 are mostly larger.

As in Table 3, the quality of the solutions generally increases with the number of stages. In
Table 5, however, the improvements are less erratic. The same behavior is confirmed for longer
planning horizons, as shown by the results in Table 10 in Appendix A.

Comparing Table 5 with Table 3 we observe that one should include one more stage in the approx-
imation, i.e. a two-stage approximation for T = 4 and 5 and a three-stage approximation for T = 6. It
could likewise make sense to include two more stages. However, there are no gains in including many
more.

We finally consider the general case of the tracking problem with random asset returns, and hence,
obtain a version of (2) with stochastic right-hand-side and recourse matrix. In this case, target values
are again sampled from the underlying triangular distribution, while asset returns are generated using
the moment-matching heuristic by Høyland et al. (2003). We assume that target values and asset
returns are uncorrelated. The scenario tree is obtained by branching 10 times per stage, i.e. by
generating 10 asset and target realizations of the conditional distribution in a node. We obtain scenario
trees counting 10T−1 scenarios, for T = 4, 5, 6. Table 6 shows the results for κ = 10 and Table 7 with
κ = 10 and a target growth of 6.485% per stage.

Table 6: Results for the tracking problem with random asset returns and G̃t ≈ T [45, 55, 65],
t = 2, . . . , T , varying the number of stages T in the original problem and T ′ in the approximation.
V SS1,T ′ [%] represents the percentage increase in objective value generated by the approximation and
is computed as 100 × V SS1,T ′/RP 1. MSV 1,T ′ [%] represents the percentage increase in the value of
the stochastic solution by including stage T ′ and is computed as 100 ×MSV 1,T ′/V SS1,T ′−1. The
remaining values are expressed in thousands of dollars.

T T ′ RP 1 EEV 1,T ′ V SS1,T ′ V SS1,T ′ [%] MSV 1,T ′ MSV 1,T ′ [%]

4

1

15.54

18.76 3.22 20.74 0.00 0.00
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2 15.68 0.14 0.91 3.08 95.64
3 15.55 0.01 0.09 0.13 90.47
4 15.54 0.00 0.00 0.01 100.00

5

1

22.26

25.19 2.93 13.15 0.00 0.00
2 22.90 0.64 2.85 2.29 78.30
3 22.36 0.10 0.45 0.54 84.38
4 22.28 0.02 0.08 0.08 83.00
5 22.26 0.00 0.00 0.02 100.00

6

1

29.69

34.36 4.67 15.74 0.00 0.00
2 30.13 0.44 1.50 4.23 90.49
3 29.91 0.23 0.76 0.22 48.93
4 29.83 0.14 0.47 0.09 38.53
5 29.72 0.03 0.12 0.11 75.47
6 29.69 0.00 0.00 0.03 100.00

Table 7: Results for the tracking problem with random asset returns and G̃t ≈ T [45(1 + ξ)t−1, 55(1 +
ξ)t−1, 65(1 + ξ)t−1], t = 2, . . . , T , and ξ = 6.485%, varying the number of stages T in the original
problem and T ′ in the approximation. V SS1,T ′ [%] represents the percentage increase in objective value
generated by the approximation and is computed as 100× V SS1,T ′/RP 1. MSV 1,T ′ [%] represents the
percentage increase in the value of the stochastic solution by including stage T ′ and is computed as
100×MSV 1,T ′/V SS1,T ′−1. The remaining values are expressed in thousands of dollars.

T T ′ RP 1 EEV 1,T ′ V SS1,T ′ V SS1,T ′ [%] MSV 1,T ′ MSV 1,T ′ [%]

4

1

12.16

14.93 2.76 22.72 0.00 0.00
2 12.28 0.12 0.99 2.64 95.64
3 12.18 0.02 0.14 0.10 85.42
4 12.16 0.00 0.00 0.02 100.00

5

1

16.10

20.14 4.04 25.08 0.00 0.00
2 16.29 0.18 1.14 3.86 95.47
3 16.16 0.06 0.38 0.12 66.67
4 16.11 0.01 0.05 0.05 86.95
5 16.10 0.00 0.00 0.01 100.00

6

1

20.50

25.79 5.28 25.76 0.00 0.00
2 20.81 0.31 1.49 4.98 94.20
3 20.64 0.13 0.64 0.17 56.91
4 20.62 0.11 0.55 0.02 14.41
5 20.51 0.00 0.02 0.11 95.94
6 20.50 0.00 0.00 0.00 0.00

Results for the case with random asset returns are shown in Table 6 and Table 7. When comparing
to the cases with fixed asset returns, we observe a higher marginal stage value in the second stage. This
suggests that deterministic approximations do not perform very well (note also the high V SS1,1 com-
pared to the previous cases), whereas the solution to a two-stage approximation already significantly
reduces the VSS (for approximations with two or more stages V SS1,T ′ is always below 3%). Using
the heuristic with M = 1 and m = 1, one should indeed solve a two-stage approximation. Finally,
contrary to the previous cases, the quality of the solutions increases consistently with the number of
stages. In fact, the MSV 1,T ′ > 0 for almost all T ′, implying that including an additional stage in
the approximation always provides a marginal improvement to the solution. With fixed targets, the
uncertainty is only in the future and its impact is less, the more distant this future is. With random

17



returns, however, uncertainty is present and has an impact throughout the whole planning horizon,
which can explain why increasing the number of stages leads to more stable improvements.

Finally, we stress that our computations of VSS and MSV aim at good here-and-now decisions.
Note that only the first-stage solution of an MSRP is implementable. In the majority of the practical
applications, the remaining stages of the scenario tree serve to approximate the uncertainty and the
remaining solutions of the problem help to make sensible first-stage decisions. In general, the appropri-
ate number of stages in an approximation to a MSRP should be driven by their impact on first-stage
decision-making. Consistent with this, we only implement the first-stage components of the solutions
obtained during our rolling-horizon procedure. As an example, consider the four-stage problem in
Table 7. The optimal value of the recourse problem is 12.16 thousand dollars, whereas the result of
using the solution to the EV 1,1 problem is 14.93 thousand dollar (recall that the EV 1,1 is the deter-
ministic problem obtained by replacing the scenario tree by its mean). The corresponding first-stage
solutions are shown in Table 8. It can be observed that the RP 1 allocates the budget to bonds and
domestic stocks, with a small holding of international stocks. The deterministic problem suggests a
heavy investment in domestic stocks, with a minor holding of cash reserves. The two solutions differ
in their tracking error but not least in their allocation strategy. On the other hand, in Table 7 we
also notice that the VSS is significantly reduced by using the solution to the EV 1,2 problem (that
is, with the two-stage approximation of the four-stage problem). In particular, the RP 1 is 12.16 and
EEV 1,2 is 12.28. The improvement of the EEV can be explained by the first-stage solution of EV 1,2

in Table 8. The allocation strategy of the two-stage approximation is consistent with that of RP 1:
both problems now allocate the budget to bonds and domestic stocks, though the amounts allocated
are still different.

Table 8: First stage solution to the RP 1, EV 1,1 and EV 1,2 problems for the four-stage case in Table 7.

Problem Bonds Cash D. Stocks I. Stocks

RP 1 32.31 0.00 17.76 4.92
EV 1,1 0.00 7.56 47.43 0.00
EV 1,2 43.81 0.00 11.18 0.00

6 Conclusions

This paper extends the following metrics from two-stage stochastic recourse problems to multistage
problems: The Value of the Expected Value problem (EV), the values of two Wait-and-See approx-
imations and the Expected result of using the Expected Value solution (EEV). We show that these
quantities provide upper and lower bounds for the optimal value of MSRPs. Moreover, we illustrate
how these bounds can be used to support the choice of the number of stages in a multistage stochastic
programming problem, with the aim to make good here-and-now decisions. In particular, we generalize
the Value of the Stochastic Solution (VSS) to account for stochastic approximations, use it to define
the Marginal Stage Value (MSV) and demonstrate how to utilize this in a heuristic.

We illustrate the approach for a portfolio replication problem. Our case study shows that the
lower bounds significantly increase with the number of stages, and that the solutions to stochastic
approximations in general improve as the number of stages increases. However, the improvements
are sometimes erratic. In fact, we illustrate that increasing the number of stages may produce worse
solutions. For some problem instances, a few stages are sufficient to obtain solutions of good quality.
For other instances, however, the number of stages can only be reduced by one or two without com-
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promising quality. In spite of this, even a small reduction in the number of stages may save substantial
computational effort for a MSRP (or simply facilitate a solution to a problem that would otherwise be
intractable).
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A Additional Results

We provide additional results for problems with longer planning horizons, namely T = 10, 12 and 15
stages, for the case with fixed asset returns and for approximations with up to T ′ = 10 stages. Table 9
shows the results for κ = 10 and Table 10 with κ = 10 and a target growth of 6.485% per stage. To
be able to solve the original problem, the scenario trees are obtained by sampling two realizations of
the random target per stage. The resulting scenario trees count 2T−1 scenarios, with T = 10, 12, 15.

Table 9: Results for the tracking problem with fixed asset returns and G̃t ≈ T [45, 55, 65], t = 2, . . . , T ,
varying the number of stages T in the problem and T ′ in the approximation. V SS1,T ′ [%] represents
the percentage increase in objective value generated by the approximation and is computed as 100×
V SS1,T ′/RP 1. MSV 1,T ′ [%] represents the percentage increase in the V SS by including stage T ′

and is computed as 100 ×MSV 1,T ′/V SS1,T ′−1. The remaining values are expressed in thousands of
dollars.

T T ′ EV 1,T ′ WS1,T ′ WS
1,T ′

RP 1 EEV 1,T ′ V SS1,T ′ V SS1,T ′ [%] MSV 1,T ′ MSV 1,T ′ [%]

10

1 56.83 61.27 59.86

61.39

61.59 0.20 0.33 0.00 0.00
2 57.15 61.32 59.86 61.48 0.08 0.14 0.12 58.52
3 57.42 61.39 59.87 61.58 0.08 0.14 0.00 0.00
4 58.07 61.39 59.96 61.45 0.06 0.10 0.02 29.26
5 59.52 61.39 60.26 61.39 0.00 0.00 0.06 100.00
6 61.17 61.39 60.64 61.39 0.00 0.00 0.00 0.00
7 61.22 61.39 61.03 61.39 0.00 0.00 0.00 0.00
8 61.37 61.39 61.06 61.39 0.00 0.00 0.00 0.00
9 61.39 61.39 61.39 61.39 0.00 0.00 0.00 0.00
10 61.39 61.39 61.39 61.39 0.00 0.00 0.00 0.00

12

1 83.53 87.54 86.28

87.67

88.04 0.37 0.43 0.00 0.00
2 83.76 87.64 86.28 87.79 0.11 0.13 0.26 69.29
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3 83.93 87.66 86.28 87.70 0.03 0.03 0.09 76.80
4 84.22 87.67 86.30 87.70 0.03 0.03 0.00 0.00
5 84.84 87.67 86.37 87.68 0.01 0.01 0.02 64.76
6 86.44 87.67 86.63 87.67 0.00 0.00 0.01 98.02
7 87.43 87.67 87.06 87.68 0.00 0.00 0.00 0.00
8 87.49 87.67 87.34 87.67 0.00 0.00 0.00 0.00
9 87.66 87.67 87.55 87.67 0.00 0.00 0.00 0.00
10 87.67 87.67 87.65 87.67 0.00 0.00 0.00 0.00

15

1 133.97 138.55 136.90

138.70

138.90 0.20 0.15 0.00 0.00
2 134.06 138.64 136.90 138.85 0.15 0.11 0.05 25.93
3 134.15 138.69 136.90 138.87 0.15 0.11 0.00 0.00
4 134.17 138.70 136.91 138.82 0.12 0.09 0.03 20.36
5 134.40 138.70 136.92 138.83 0.12 0.09 0.00 0.00
6 134.78 138.70 137.00 138.73 0.03 0.02 0.09 76.76
7 135.60 138.70 137.31 139.00 0.03 0.02 0.00 0.00
8 137.21 138.70 137.82 139.08 0.03 0.02 0.00 0.00
9 138.52 138.70 138.16 138.72 0.02 0.01 0.01 35.61
10 138.55 138.70 138.31 138.70 0.00 0.00 0.02 90.36

Table 10: Results for the tracking problem with fixed asset returns and G̃t ≈ T [45(1 + ξ)t−1, 55(1 +
ξ)t−1, 65(1 + ξ)t−1], t = 2, . . . , T , and ξ = 6.485%, varying the number of stages T in the problem and
T ′ in the approximation. V SS1,T ′ [%] represents the percentage increase in objective value generated
by the approximation and is computed as 100×V SS1,T ′/RP 1. MSV 1,T ′ [%] represents the percentage
increase in the V SS by including stage T ′ and is computed as 100 × MSV 1,T ′/V SS1,T ′−1. The
remaining values are expressed in thousands of dollars.

T T ′ EV 1,T ′ WS1,T ′ WS
1,T ′

RP 1 EEV 1,T ′ V SS1,T ′ V SS1,T ′ [%] MSV 1,T ′ MSV 1,T ′ [%]

10

1 0.03 20.56 20.31

26.06

27.72 1.66 6.37 0.00 0.00
2 5.12 20.63 21.56 26.67 0.61 2.35 1.05 63.17
3 7.27 21.06 22.52 26.13 0.07 0.26 0.54 89.02
4 9.67 21.82 23.29 26.06 0.00 0.00 0.07 99.95
5 12.93 22.38 24.01 26.06 0.00 0.00 0.00 0.00
6 16.14 23.16 24.54 26.06 0.00 0.00 0.00 0.00
7 18.42 24.05 25.24 26.06 0.00 0.00 0.00 0.00
8 21.39 24.83 25.83 26.06 0.00 0.00 0.00 0.00
9 23.57 26.06 25.86 26.06 0.00 0.00 0.00 0.00
10 26.06 26.06 26.06 26.06 0.00 0.00 0.00 0.00

12

1 0.03 26.21 25.96

33.17

35.62 2.45 7.38 0.00 0.00
2 5.12 26.28 26.98 34.28 1.12 3.36 1.33 54.40
3 7.27 26.69 27.77 33.27 0.10 0.32 1.01 90.59
4 9.67 27.43 28.79 33.18 0.01 0.02 0.10 93.16
5 12.93 27.96 29.66 33.17 0.00 0.00 0.01 100.00
6 16.24 28.73 30.40 33.17 0.00 0.00 0.00 0.00
7 18.69 29.55 31.12 33.17 0.00 0.00 0.00 0.00
8 22.19 30.41 31.64 33.17 0.00 0.00 0.00 0.00
9 25.57 31.39 32.55 33.17 0.00 0.00 0.00 0.00
10 29.12 32.10 32.94 33.17 0.00 0.00 0.00 0.00

15

1 5.97 45.74 45.49

56.19

59.56 3.37 5.99 0.00 0.00
2 11.06 45.80 47.35 58.10 1.91 3.40 1.46 43.33
3 14.63 46.22 48.37 56.48 0.29 0.51 1.62 85.05
4 18.68 46.96 49.37 56.26 0.06 0.12 0.22 77.29
5 22.24 47.48 50.11 56.20 0.01 0.02 0.05 84.38
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6 25.68 48.25 50.83 56.19 0.00 0.00 0.01 83.58
7 28.38 49.05 51.82 56.19 0.00 0.00 0.00 0.00
8 31.96 49.96 52.68 56.19 0.00 0.00 0.00 0.00
9 35.36 50.95 53.41 56.19 0.00 0.00 0.00 0.00
10 38.99 51.98 54.13 56.19 0.00 0.00 0.00 0.00
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