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Abstract. This article presents and compares two formulations for a
pricing-based carsharing relocation problem. Given a target planning
period, the problem consists of deciding simultaneously the price of car-
sharing rides between different zones of the city and the relocations of
vehicles to perform to better serve demand. Customers response to pric-
ing decisions are captured by utility functions. Results illustrate that
one of the two formulations is superior in terms of ease of solution and
scalability.
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1 Introduction

The increase in car ownership and usage, coupled with high dependency on pri-
vate vehicles and low occupancy rates, have determined serious traffic congestion
problems in many cities of the world [10] resulting pollution and poor urban air
quality. Improvements of public transport [25] and road pricing measures [9,13]
have, to a large extent, failed to provide sustainable solutions [10,2,21]. In this
context, shared mobility, and particularly carsharing, has emerged as a viable
alternative as it is linked to a decrease in congestion [12], pollution, land used
[26] and transport costs [14,23].

Nevertheless, the attractiveness of carsharing systems, and their potential
to replace car ownership, is heavily dependent on the level of service offered
(e.g., the actual availability of vehicles when needed, and their distance from
the user’s location) and its cost [6]. Ensuring the necessary levels of service
in an economically viable manner poses novel complex planning problems to
carsharing operators (CSOs). Failure to deal with this complexity results in
early failure such as those reported in [1,27,11]. The focal problem in this article
is that of pricing carsharing rides and ensuring a spatial distribution of the fleet
that complies with demand.

A central challenge faced in such systems is that one-way rentals, coupled
with demand tides and oscillations [30,31], create frequent imbalances in the dis-
tribution of vehicles. This results in an accumulation of vehicles in low-demand
zones, and vehicle shortage in high-demand zones [4,6] with levels of service drop-
ping accordingly. Failure to ensure a spatial distribution of vehicles consistent
with demand determines unreliable levels of service.
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The research literature is slowly catching up and offering analytics methods
for facing such challenges. Methods have been proposed for planning staff-based
relocation activities [7,31,6,8,18,20,19,24,4,3], possibly combined with recharging
[15] (see also the surveys [23,17]). These methods, typically based on optimiza-
tion techniques, employ a mathematical problem (e.g., a MILP problem) to de-
cide which vehicles should be relocated and where, and possibly which operators
should perform the relocations. Methods have also been proposed for pricing
carsharing services [16] and for inducing user-based relocations through pricing
strategies [4,29,28].

This article addresses the problem of simultaneously setting pricing and de-
ciding relocation activities. We propose two alternative formulations, the former
derived from the demand-based discrete optimization framework of [5] also used
in the context of carsharing by [16], the latter a pure IP reformulation of the
former. We compare them in a computational study with the scope of identifying
the one offering better performances in terms of solve times. The use of the two
formulations is envisaged in the context of scenario analysis or simulation.

In Section 2 we provide a brief description of the problem followed by model-
ing assumptions. In Section 3 we present an extensive formulation in a discursive
manner in order to clarify all details of the problem. In Section 4 we present a
compact formulation. In Section 5 we describe a computational study and its
results. Finally, we draw conclusions in Section 6.

2 Problem overview and modeling assumptions

Given a target period representing a portion of the day, e.g., a number of hours
in the afternoon or morning, the distribution of vehicles at the time of planning,
and the cumulative transport demand outlook for the target period, we address
the problem of determining the prices to offer in the target period and the
relocations to perform in preparation for the target period. Prices must be set
taking into account customers preferences and the competition of alternative
transport services (e.g., bus, metro, bicycle) and can vary with the origin and
destination of the carsharing ride. The following assumptions are made.

A1 The price is made of a drop-off fee, which depends on the origin and des-
tination of the rental, plus a per-minute fee which is identical to all zones.
This is consistent with current pricing schemes in a number of carsharing
services1. The drop-off fee may be negative to encourage desired movements
of cars.

A2 The CSO can adjust the drop-off fee during the day, e.g., in response to
demand waves.

A3 The CSO is able to inform customers about the current price from their
location to every other zone, prior to rentals.

1 See e.g., the pricing model recently adopted by Car2Go https://www.car2go.com/
IT/en/milano/costs/.
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A4 Alternative transport services (e.g., public transport and personal bicycles)
have unlimited capacity.

A5 A customer chooses exactly one transport service among the available ones
(i.e., the market is closed) and, particularly, the one that gives them the
highest utility.

A6 An outlook of the cumulative demand of transport between different zones
of the city is available (e.g., a forecast point or historical realization).

A7 Customers traveling with shared cars drive directly from their origin to their
destination zone.

A8 Both the CSO and the customers are aware of all available transport services
and of their characteristics (e.g., price, travel time and waiting time). Such
characteristics are identical for all customers.

3 Extensive Formulation (F1)

Consider a urban area represented by a finite set I of zones and a CSO offering
a finite set of shared vehicles V. Before the beginning of the target period, the
CSO is to decide the drop-off fee between each pair of zones and the relocations
to perform to better serve demand in the target period.

At the time of planning, vehicles v ∈ V are geographically dispersed in the
urban area as the result of previous rentals. Let parameter Xvi is equal to 1 if
vehicle v ∈ V is initially in zone i ∈ I, 0 otherwise, with

∑
i∈I Xvi = 1 for all

v ∈ V. Let decision variable xvij be equal to 1 if vehicle v ∈ V is relocated from
zone i ∈ I to zone j ∈ I, 0 otherwise. A vehicle can be relocated at most one
time, that is ∑

j∈I
xvij ≤ Xvi ∀v ∈ V, i ∈ I (1a)

Let decision variable zvi be equal to 1 if vehicle v is available for rental at zone
i in the target period, 0 otherwise. It must hold that

zvi = Xvi −
∑
j∈I

xvij +
∑
j∈I

xvji ∀v ∈ V, i ∈ I (1b)

Let L be a finite set of drop-off fees the CSO is considering, and let decision
variable λijl be equal to 1 if fee l is applied when renting a car in zone i and
leaving it in zone j, 0 otherwise. Only one drop-off fee can be selected between
each pair of zones ∑

l∈L

λijl = 1 ∀i, j ∈ I (1c)

The city counts a set A of alternative transport services such as metro, bus,
bicycle, and taxi. Let decision variable pvij be the price of service v ∈ V ∪ A
between zones i and j. The price of a carsharing ride between zones i and j is

pvij = PV
v T

CS
vij +

∑
l∈L

Llλijl ∀v ∈ V, i, j ∈ I (1d)
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where parameter PV
v is the per-minute fee of vehicle v ∈ V, TCS

vij the driving time
between zones i and j and Ll the value of drop-off fee at level l ∈ L. Instead,
the price of alternative services is set as

pvij = Pvij ∀v ∈ A, i, j ∈ I (1e)

where parameter Pvij is the price of alternative service v ∈ A between i and
j ∈ I.

Let K be the set of customers, with Ki ⊆ K being the set of customers
traveling from zone i ∈ I and Kij ⊆ Ki the set of customers traveling from
i ∈ I to j ∈ I in the target period. Each customer is uniquely characterized
by their preferences. The preferences of customer k are described by a utility
function Fk(pvij , π

1
vij , . . . , π

N
vij) of the price pvij and a number of characteristics

π1
vij , . . . , π

N
vij of transport service v ∈ V ∪ A between zones i and j ∈ I (e.g.,

travel and waiting time), and a random term ξ̃kv representing the portion of the
preferences of customer k that the CSO is not able to describe by Fk(·). Any
distribution for ξ̃kv is valid, leading in turn to different choice models such as the
Logit model when ξ̃kv follows an extreme value distribution (see [5]). Let uijkv
be a decision variable representing utility obtained by customer k ∈ K when
moving from i to j ∈ I using service v ∈ V ∪ A. The utility is determined by

uijkv = Fk(pvij , π
1
vij , . . . , π

N
vij) + ξkv ∀i, j ∈ I, k ∈ Kij , v ∈ V ∪ A (1f)

where ξkv is a realization of ξ̃kv. Constraints (1f) are linear if Fk(·) is linear in
pvij .

Let binary variable yikv be equal to 1 if service v ∈ V ∪ A is offered to
customer k ∈ Ki, 0 otherwise. Alternative services v ∈ A are always offered to
customers whenever they are available at all, that is

yikv = Yvi ∀i ∈ I, k ∈ Ki, v ∈ A (1g)

where parameter Yvi is equal to 1 if alternative service v is available in zone i, 0
otherwise. Conversely, a shared car v ∈ V can be offered to customers in zone i
whenever it is physically available at i, that is

yikv ≤ ziv ∀i ∈ I, k ∈ Ki, v ∈ V (1h)

Let decision variable wijkv be equal to 1 if customer k ∈ Kij chooses service
v ∈ V ∪ A, 0 otherwise. A customer will choose exactly one service∑

v∈V∪A
wijkv = 1 ∀i, j ∈ I, k ∈ Kij (1i)

And a service can be chosen only if it is offered to the customer

wijkv ≤ yikv ∀i, j ∈ I, k ∈ Kij , v ∈ V ∪ A (1j)

Among the available services, the customer will chose the one yielding the
highest utility. Therefore, for a given zone i ∈ I, let decision variable νivwk be
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equal to 1 if both services v and w in V ∪ A are available to customer k ∈ Ki,
0 otherwise, and decision variable µijvwk be equal to one if service v ∈ V ∪ A
yields a greater utility than service w ∈ V ∪A to customer k ∈ Kij moving from
i to j, 0 otherwise. The following constraints state that νivwk is equal to one
when both services v and w are available

yikv + yikw ≤ 1 + νivwk ∀i ∈ I, k ∈ Ki, v, w ∈ V ∪ A, (1k)

νivwk ≤ yikv ∀i ∈ I, k ∈ Ki, v, w ∈ V ∪ A, (1l)

νivwk ≤ yikw ∀i ∈ I, k ∈ Ki, v, w ∈ V ∪ A. (1m)

A service is chosen only if it yields the highest utility

wijkv ≤ µijvwk ∀i, j ∈ I, k ∈ Kij , v, w ∈ V ∪ A (1n)

that is, as soon as µijvwk is set to 0 for some index w, wijkv is forced to 0 and
service v is not chosen by customer k on i-j. The following constraints ensure
that decision variable µijvwk takes the correct value according to the utility

Mijkνivwk − 2Mijk ≤ uijkv−uijkw −Mijkµijvwk (1o)

∀i, j ∈ I, k ∈ Kij , v, w ∈ V ∪ A

and

uijkv − uijkw −Mijkµijvwk ≤(1− νivwk)Mijk (1p)

∀i, j ∈ I, k ∈ Kij , v, w ∈ V ∪ A

where constant Mijk represents the greatest difference in utility between two
services between i and j ∈ I for customer k ∈ Kij , that is Mijk ≥ |uijkv −
uijkw|,∀v, w ∈ V ∪A. Constraints (1o)-(1p) work as follows. When both services
v and w are available (νivwk = 1) and uijkv > uijkw, (1p) forces µijvwk to take
value 1, while (1o) reduces to 0 ≤ uijkv − uijkw. When both service v and w are
available and uijkv < uijkw, (1o) forces µijvwk to take value 0, while (1p) reduces
to 0 ≥ uijkv − uijkw. When one of the two services is not available (νivwk = 0),
constraints (1o)-(1p) are satisfied irrespective of the value of µijvwk. In case of
ties (uijkv = uijkw) we impose

µijvwk + µijvwk ≤ 1 ∀i, j ∈ I, k ∈ Kij , v, w ∈ V ∪ A (1q)

A service can be preferred only if offered

µijvwk ≤ yikv ∀i, j ∈ I, k ∈ Kij , v, w ∈ V ∪ A (1r)

Let decision variable αijkvl be equal to 1 if fare l is applied between i and j
and customer k chooses shared car v ∈ V, 0 otherwise. The following constraints
ensure the relationship between λijl and wijkv and αijkvl

λijl + wijkv ≤ 1 + αijkvl ∀v ∈ V, i, j ∈ I, k ∈ Kij , l ∈ L (1s)
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αijkvl ≤ λijl ∀v ∈ V, i, j ∈ I, k ∈ Kij , l ∈ L (1t)

αijkvl ≤ wijkv ∀v ∈ V, i, j ∈ I, k ∈ Kij , l ∈ L (1u)

Each car v ∈ V can accommodate only one customer. If more than one
customers wish to use car v, the car is taken by the first customer arriving at
the car. Assuming that customers are indexed according to their arrival time at
the car, i.e., customer k arrives before k + 1, we impose that a vehicle is offered
to a customer only if it is offered also to the customer arriving before them (who
perhaps did not take it), that is:

yikv ≤ yi(k−1)v ∀i ∈ I, k ∈ Ki, v ∈ V (1v)

A vehicle becomes unavailable for a customer if any customer has arrived before
them and rented the car, that is:

ziv − yikv =
∑
j∈I

∑
q∈Kij :q<k

wijqv ∀i ∈ I, k ∈ Ki, v ∈ V (1w)

that is, if car v is in zone i (ziv = 1), but it is not offered to customer k (yikv = 0)
we obtain

1 =
∑
j∈I

∑
q∈Kij :q<k

wijqv

meaning that one customer has arrived before k and rented the car. On the other
hand, if the car is offered to customer k, (yikv = 1), then it must be in zone i
(ziv = 1 – see (1h)), and we obtain

0 =
∑
j∈I

∑
q∈Kij :q<k

wijqv

meaning that no customer arriving before k has taken the car. The same equality
holds if the vehicle is not available at all (ziv = 0 and yijkv = 0).

The CSO maximizes their profit by means of the following objective function

max
∑
v∈V

∑
(i,j)∈I×I

(
PV
v T

CS
vij − CU

vij

) ∑
k∈Kij

wijkv (1x)

+
∑
v∈V

∑
(i,j)∈I×I

∑
k∈Kij

∑
l∈L

Lijlαijkvl (1y)

−
∑
v∈V

∑
(i,j)∈I×I

CR
vijxvij (1z)

where CU
vij is the cost born by the CSO when vehicle v is rented between i

and j and (1x) represents the net revenue generated by the per-minute fee, (1y)
represents the revenue generated by the drop-off fee, CR

vij is the cost of relocating
vehicle v from i to j and (1z) represents the total relocation cost.

Therefore, formulation F1 consists of objective function (1x)–(1z) subject to
(1a)–(1w).
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4 Compact formulation (F2)

Given a realization ξkv of ξ̃kv, e.g., in a scenario analysis, a compact reformulation
of the problem can be derived by preprocessing customers preferences. This
formulation has a double advantage: its size is in general smaller than F1, and
it does not require the utility function to be linear in the price.

We introduce the concept of a request. A request represents a customer who
wishes to use carsharing for moving from its origin to its destination. Let R be
the set requests. The set R contains a request for each customer k ∈ K for which
there exists at least one drop-off level l ∈ L such that the customer would prefer
carsharing to alternative transport services that is, for which uijkv > uijkw with
v ∈ V and w ∈ A (note that all shared cars yield the same utility). Let i(r),
j(r) and k(r) be the origin, destination and customer associated with request
r, respectively, and l(r) the highest drop-off fee at which customer k(r) would
prefer carsharing to other services. Note, that customer k(r) would still prefer
carsharing at any drop-off fee lower than l(r) (under the reasonable assumption
that the customer is sensitive to price). For each r ∈ R let Rvrl = PV

v T
CS
v,i(r),j(r)−

CU
v,i(r),j(r) + Ll, for l ≤ l(r), be the profit generated if request r is satisfied by

vehicle v with drop-off fee l. Let CR
vi = CR

vji if v is initially in j 6= i, 0 otherwise,
be the cost of making vehicle v available at i. Let Rr = {ρ ∈ R : i(ρ) =
i(r), k(ρ) < k(r)} be the set of requests which have a precedence over r. Let
Rij = {r ∈ R : i(r) = i, j(r) = j}. Let Lr = {l ∈ L : l ≤ l(r)}. Finally, let
decision variable yvrl be equal to 1 if request r is satisfied by vehicle v at level l,
0 otherwise. Let zvi if vehicle v is made available at zone i, 0 otherwise. Finally,
let λijl be equal to 1 if drop-off level l is applied between i and j, 0 otherwise.
Formulation F2 is hence

max
∑
r∈R

∑
v∈V

∑
l∈Lr

Rvrlyvrl −
∑
v∈V

∑
i∈I

CR
vizvi (2a)

∑
v∈V

∑
l∈Lr

yvrl ≤ 1 r ∈ R (2b)

∑
r∈R

∑
l∈Lr

yvrl ≤ 1 v ∈ V (2c)

∑
i∈I

zvi = 1 v ∈ V (2d)∑
l∈Lr1

yv,r1,l − zv,i(r1) +
∑

r2∈Rr1

∑
l∈Lr2

yv,r2,l ≤ 0 r1 ∈ R, v ∈ V (2e)

yv,r1,l1 ≥ λi(r1),j(rj),l1 + zv,i(r1)

−
∑

r2∈Rr1

∑
l2∈Lr2

yv,r2,l2 −
∑

v1∈V:v1 6=v

yv1,r1,l1 − 1 r1 ∈ R, v ∈ V, l1 ∈ Lr1 (2f)

∑
l∈L

λijl = 1 i ∈ I, j ∈ J (2g)
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v∈V

yvrl ≤ λi(r),j(r),l r ∈ R, l ∈ Lr (2h)

yvrl ∈ {0, 1} r ∈ R, v ∈ V, l ∈ Lr (2i)

zvi ∈ {0, 1} i ∈ I, v ∈ V (2j)

λijl ∈ {0, 1} i ∈ I, j ∈ I, l ∈ L. (2k)

The objective function (2a) maximizes the profit obtained by the satisfaction of
customer requests minus the cost of relocating vehicles. Constraints (2b) ensure
that each request is satisfied at most once and constraints (2c) that each vehicle
satisfies at most one request. Constraints (2d) ensure that a vehicle is available
in exactly one zone. Constraints (2e) state that a request can be satisfied by
vehicle v only if the vehicle is in zone i(r1) and the vehicle has not been assigned
to a customer with a lower index (that is, arriving at the vehicle before k(r1)).
Constraints (2f) state that a request r1 at a certain level l1 must be satisfied by
a vehicle v if the fare level l1 has been selected and the vehicle is available at
i(r1), unless the car has been used to satisfy the request of a customer with a
higher priority, or r1 has been satisfied by another vehicle. Constraints (2g) state
that for each i and j only one drop-off fee can be applied. Finally, constraints
(2h) states that a request can be satisfied at level l only if fare l is applied to all
customers traveling between i and j.

5 Computational Study

Formulations F1 and F2 include a number of arbitrary elements subject to un-
certainty, such as customers unknown preferences ξkv, their location and desti-
nation. As such, the envisaged usage of F1 and F2 is within a simulator, scenario
analysis or as a component of a larger stochastic program, where different sce-
narios of the uncertain elements are assessed. Therefore, the scope of the compu-
tational study is to compare the two formulations on the case study illustrated
in Section 5.1 in terms of solve time, percentage of problems solved, tightness of
their LP relaxation and size. Results are presented in Section 5.2.

5.1 Case Study

To compare the two formulation we use a case study that replicates the carshar-
ing system in the city of Milan. We assume the decision maker is a CSO with
a homogeneous fleet V = {1, . . . , V }, servicing customers K = {1, . . . ,K}. The
alternative transport services are public transport (PT – bus and metro) and
bicycles (B). Therefore we set A = {PT,B}. A discretization of the business
area of the city of Milan into ten zones is provided by [16], thus I = {1, . . . , 10}.

To each vehicle v we randomly assign an initial zone i (parameter Xvi).
Similarly, we randomly partition customers into sets Ki and then further into
sets Kij . Each customer k is characterized by a unique utility function. We adopt
a variant of the utility function provided by [16] which further elaborates the
utility function provided by [22]. The function is linear in the price rendering
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F1 a mixed-integer linear program. For each customer k ∈ K traveling between
i and j with transport service v, the utility can be stated as (3).

Fk(pvij , T
CS
vij , T

PT
vij , T

B
vij , T

Walk
vkij , TWait

vij ) = βP
k pvij + βCS

k TCS
vij

+ βPT
k TPT

vij + τ(TB
vij)β

B
k T

B
vij + τ(TWalk

vij )βWalk
k TWalk

vij + βWait
k TWait

vij (3)

where

– TCS
vij is the spent riding a shared car between i and j when using service
v. This quantity is strictly positive only when v is a carsharing service,
otherwise it is 0.

– TPT
vij is the time spent in public transport between i and j when using service
v. This quantity is strictly positive only when v is PT, otherwise it is 0.

– TB
vij is the time spent riding a bicycle between i and j when using service v.

This quantity is strictly positive only when v is B, otherwise it is 0.
– TWalk

vkij is the walking time necessary for customer k to move with transport
service v between i and j. This includes the walking time to the nearest
service (e.g., shared car or bus stop), between connecting means (e.g., when
switching between bus and metro to reach the final destination), and from
to the final destination.

– TWait
vij is the total waiting time when using service v between i and j, and

includes the waiting time for the service (e.g., bus or metro) as well as for
connection.

The function τ : R → R, defined as τ(t) = d t5e, allows us to model the utility
of cycling and walking as a piece-wise linear function: the utility of walking and
cycling decreases faster as the walking and cycling time increases. Coefficients
βP
k , βCS

k , βPT
k , βB

k , βWalk
k and βWait

k represent the sensitivity of customer k to
price, carsharing ride time, time spent in public transport service, cycling time,
walking and waiting time, respectively.

For each (i, j) pair [16] provide a specification in minutes of the above men-
tioned T -parameters calculated on the actual services in Milan. In addition [16]
provide base values for the β coefficients following the procedure illustrated by
[22]. Particularly, they set βCS = −1, βPT = −2, βB = −2.5, βWalk = −3
and βWait = −6 and βP = −188.33 if a customer belongs to the lower-middle
class or βP = −70.63 if a customer belongs to the upper-middle class. In order
to create K unique customers, each customer will be characterized by a pertur-
bation of the β coefficients provided by [16]. Particularly, βP

k will be uniformly
drawn in [−188.33,−70.63] in order to obtain customers between the upper- and
lower-middle class and the remaining β coefficients will be uniformly drawn in
[0.8β, 1.2β], where β is the value provided by [16]. As an example, for each k we
will draw βPT

k in [−1.6,−2.4].
The price of a bicycle ride is set to PBij = 0 for all (i, j) pairs. Based on

current prices in Milan we set PPT,ij = 2 (in Euro) for all (i, j) and PV
v = 0.265

Euros corresponding to the average carsharing per-minute fee in Milan. The
drop-off fees considered are −2,−1,0,1, and 2 Euros in order to include the
possibility that the company provides a bonus for the desired movements of
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cars. The relocation cost CR
vij represents the cost of the fuel necessary for a

ride between i and j (we assume Fiat 500 cars with classical combustion engine
and consumption of 0.043l/h) and the per-minute salary of the driver multiplied
by the driving time. The fuel cost is calculated assuming an average speed of
50km/h and a fuel price of 1.60 Euro/l. The per-minute salary of the driver is
calculated as the average of the last four retribution levels in the Italian national
collective contract for logistics services valid at October 1st 20192 and amounts
to approximately 0.11 Euros. The cost CU

vij is set equal to the fuel necessary for
a ride between i and j.

Finally, realizations of ξ̃kv are independently drawn from a Gumbel (Extreme
Value type I) distribution with mean 0 and standard deviation σ calculated as the
empirical standard deviation of Uijkv = Fk(pvij , T

CS
vij , T

PT
vij , T

B
vij , T

Walk
vij , TWait

vij )
for all i, j ∈ I, v ∈ V ∪ A, k ∈ Kij .

Particularly, we solve a set of small instances with V ∈ {20, 35, 50} and
K ∈ {50, 75, 100} and a set of medium instances with V ∈ {50, 75, 100} and
K ∈ {200, 300}. For each combination of V and K we randomly generate five
instances (each of the five instances will be different in terms of position and
characteristics of the customers and distribution of vehicles).

5.2 Results

Problems are solved with Cplex 12.10 on a machine equipped with CPU 2 x
2.4GHz AMD Opteron 2431 6 core and 24Gb RAM. A time limit of 360 seconds
is set on all runs.

Table 1 reports the average solve time and percentage of problems solved
for the small and medium instances. Already on the small instances it can be
observed that F2 is superior to F1. F2 solves all problems to optimality (i.e.,
within the default Cplex 0.01% tolerance) in at most 2.635 seconds on average,
while F1 solves only all the smallest instances and, also in that case, it spends a
significantly higher amount of time compared to F2. On the medium instances
F1 does not solve any of the problems, and in a number of cases the solution
process fails due to an excessive use of memory resources. On the same instances,
F2 solves all problems to optimality with an average solution time much smaller
than the allocated time limit.

2 https://www.lavoro-economia.it/ccnl/ccnl.aspx?c=328

https://www.lavoro-economia.it/ccnl/ccnl.aspx?c=328
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Table 1: Average solve time [sec] and percentage of problems solved for the small
instances. The symbol “–” indicates that the solution process failed for excessive
consumption of memory resources.

Time [sec] Solved [%]
V K F1 F2 F1 F2

20 50 67.485 0.465 100 100
20 75 187.209 0.506 80 100
20 100 309.379 0.658 40 100
35 50 342.699 0.784 20 100
35 75 360.953 1.230 0 100
35 100 362.098 1.771 0 100
50 50 361.400 1.432 0 100
50 75 361.060 2.048 0 100
50 100 363.038 2.635 0 100

50 200 – 6.763 – 100
50 300 – 13.680 – 100
75 200 368.963 10.964 0 100
75 300 397.119 18.955 0 100
100 200 384.174 19.546 0 100
100 300 376.794 34.848 0 100

The better performance of F2 is motivated by the tightness of its LP relax-
ation and its compact size. Regarding the quality of the LP relaxation, Table 2
reports the optimal objective value of the five randomly generated instances with
V = 20 and K = 50 (the only instance size for which F1 solved all instances to
optimality – see Table 1) together with the optimal objective value of the LP
relaxations of F1 and F2. It can be noticed that F2 has a very strong LP relax-
ation as its optimal objective value corresponds to that of the IP formulation on
all 5 instances in Table 2. At the same time, the LP relaxation of F1 provides
a bound which is approximately from two to four times the optimal objective
value. For the remaining instances not shown in Table 2, the LP gap for formu-
lation F2 is zero on all the small instances, while on the medium instances it is
zero for 24 of the 30 instances. For the remaining 6 instances the average LP
gap is 0.018%, the maximum is 0.224% and the standard deviation is 0.052%.
However, despite the relatively small LP gap, the solution to the LP relaxation is
highly fractional, with limited chances obtaining the optimal solution by means
of a simple rounding procedure.

The size of the two formulations also explains the different performances.
The average size of the instances is reported in Table 3. The table illustrates
how the size of F1 is orders of magnitude larger than the size of F2.
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Table 2: Optimal objective value compared to the optimal objective value of the
LP relaxations for the instances with V = 20 and K = 50.

LP objective value
Instance V K Optimal objective value F1 F2

1 20 50 53.58 124.22 53.58
2 20 50 40.64 128.12 40.64
3 20 50 25.94 117.19 25.94
4 20 50 25.94 119.35 25.94
5 20 50 38.44 124.75 38.44

Table 3: Average size of the instances in 104 variables/constraints.

# Variables # Binary # Constraints
V K F1 F2 F1 F2 F1 F2

20 50 5.24 0.17 5.14 0.17 19.48 0.16
20 75 7.87 0.21 7.72 0.21 29.67 0.22
20 100 10.41 0.25 10.21 0.25 39.63 0.27
35 50 14.10 0.26 13.94 0.26 53.74 0.26
35 75 21.22 0.34 20.97 0.34 81.61 0.37
35 100 28.13 0.41 27.79 0.41 108.72 0.46
50 50 27.25 0.35 27.01 0.35 104.92 0.36
50 75 41.04 0.46 40.68 0.46 159.12 0.51
50 100 54.41 0.56 53.94 0.56 211.70 0.65

50 200 109.05 1.01 108.10 1.01 432.08 1.26
50 300 164.23 1.46 162.79 1.46 660.95 1.87
75 200 235.16 1.49 233.75 1.49 931.39 1.88
75 300 354.17 2.16 352.05 2.16 1418.59 2.79
100 200 409.06 1.98 407.20 1.98 1619.71 2.49
100 300 616.12 2.87 613.31 2.87 2461.23 3.70
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6 Conclusions

An extensive and a compact formulation for a carsharing pricing and relocation
problem have been proposed. The formulations allow a carsharing operator set
the price of carsharing rides between different zones of the city and at the same
time the relocations to perform to better serve demand. Customers choices are
directly included in the models by means of utility functions. The computational
study shows that the compact formulation outperforms the extensive formulation
in terms of solution time, number of instances solved and quality of the linear
programming bound. Particularly, the relatively small solution time makes the
compact formulation amenable to use in the context of a scenario analysis or
simulation.
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