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Abstract

Most professional European football clubs are well-structured businesses. Therefore, the financial

performance of investments in players becomes crucial. In this paper, after the problem is discussed and

formalized, an optimization model with the objective of maximizing the expected value of the team is

presented. The model ensures that the team has the required mix of skills, that competition regulations

are met, and that budget limits are respected. The model explicitly takes into account the uncertainty

in the career development of football players. A case study based on the English Premier League is

presented. Our results show that the model has significant potential to improve current decisions ensuring

a steady growth of the value of the team. The team value growth reported is particularly driven by

investments in young prospects.

Keywords: soccer,team composition,sports management,stochastic programming

1 Introduction

European Football (or soccer in U.S. parlance), besides being one of the most practiced leisure activities, has

become a flourishing industry. Hundreds of professional football clubs all over the world are well-structured

businesses, and complex entertainment systems are built around football competitions. Deloitte (2016) esti-

mates the cumulative revenue of the top 20 football clubs to be e6.6 billion for season 2014/15, and expects

further growth towards e8 billion for season 2016/17. This corresponds to doubling of revenue in six years.

The study ascribes the main earning potential of football clubs to: (a) match-day revenue through stadium

attendance, (b) broadcasting rights (including the distributions for participating, and possibly advancing,
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in national and international competitions), and (c) commercial income through sponsorship (see Bouchet,

Doellman, Troilo, and Walkup (2015)), merchandising, and social media visibility.

In this context, one of the key decisions for football club managers, in order to stimulate earnings, is

the hiring of professional players to compete for the club. In fact, Dobson and Goddard (2001, Ch.2) state

that the main component of a football club’s cost is expenditure on players through wages and transfer fees.

Furthermore, combining the data in Forbes (2015b) and Forbes (2015a), it emerges that 17 of the 20 highest-

salaried players play for the top 8 most valuable clubs. This data suggests that valuable players stimulate

all the above-mentioned sources of earnings. In fact, skilled players can reinforce and trigger the interest of

supporters in the club, which in turn is translated into stadium attendance, merchandise sale, social media

visibility, and sponsorship deals. As an example, Forbes (2015b) shows that top-paid football players can

generate significant social media interest. Bouchet et al. (2015) register a positive effect on the stock return

after an enterprise sponsors an international match featuring popular clubs. As far as broadcasting rights

are concerned, at least part of them are conditional on qualification and thus on successes on the field of

play. However, as Dobson and Goddard (2001, Ch.2) point out, sport successes also depend on the club’s

capacity to strengthen the team by purchasing and retaining the best players. Finally, for clubs with limited

spending potential, a crucial source of sustainment is arguably the sale of players. Such clubs, in fact, can

make significant profits by scouting and purchasing young talents and selling them once they reach a high

market value. Thus, the composition of the team is a crucial driver for both the competitive and financial

performance of a club.

In this paper we consider a football club’s strategic problem of investing an available budget to purchase

football players. The objective is to maximize the expected value of the team - represented by the sum of the

transfer market appreciation of the players in the team. The need to obtain players with certain skills is taken

into account as well as competition rules (which may as well influence the mix of players). In addition, we

take into consideration the uncertainty in the future market evaluation of the players which, besides being

driven by performance, is influenced by a number of unpredictable elements such as injuries, motivation, and

luck. We refer to this problem as the Football Team Composition Problem (FTCP). Thus, the contribution

of this paper is a novel stochastic optimization model for assisting football club managers when investing

in football players while explicitly dealing with uncertainty in the career development of players. To our

knowledge, this problem has not been considered before. The model is tested on a case study based on the

English Premier League. Decisions to the model are compared to those of the corresponding real-life clubs

in order to assess whether the model might help decision makers in reality. The problem is formalized in

Section 2, while in Section 3 we connect it to the existing literature. In Section 4 we provide a mathematical
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model for the FTCP and in Section 5 we present a computational study. Finally, conclusions are drawn in

Section 6.

2 The Football Team Composition Problem

Football clubs engage a number of football players in order to participate in national and international

competitions. The International Federation of Football Associations (FIFA) dictates that clubs register new

players only during registration periods (FIFA, 2015), or transfer market windows (TMWs) in football

jargon. Particularly, each national football association must arrange two TMWs, the first between two

consecutive seasons for at most twelve weeks, and the second in the middle of the season for at most four

weeks. In order to be registered for competitions, professional football players are engaged to clubs by

means of contracts.

If a club wants to hire a player currently engaged to another club, an agreement between the clubs must

be reached. Such agreement typically involves a remuneration for the club who currently has a contractual

agreement with the player. The remuneration reflects the value of the player, which is influenced by market

logic and measures the increase in the buying team’s performance and club revenue (Dobson and Gerrard,

1999). A new contract between the purchasing club and the player is then signed. Free-agent players, that is,

players who are currently free from contracts, can also be engaged. In what follows we say that a club owns

a player if there is an ongoing contractual agreement between the two. Similarly, we say that club A buys a

player when they find an agreement with club B, who currently owns the player, in order for the player to

play for club A. In that case we also say that club B sells the player. Players may also be borrowed/lent by

one team to another (FIFA, 2015). In this case we say that the player is on a loan. A loan fee is typically

paid to the club which owns and lends the player and the salary is typically paid by the club which borrows

the player. The most common duration of a loan is one season.

When planning the team, clubs must take a number of restrictions into account. Managers of football

clubs are typically given a budget to spend in the ongoing TMW. The budget is typically decided by the

financial management or by the owners of the club and may be limited by competition regulations, such

as the UEFA Financial Fair Play (UEFA, 2015b). However, in addition to the given budget, clubs may

reinvest earnings from selling and lending players. The number of players which can participate in a given

competition is also limited by the organizers of the competition. As an example, for the period 2015-2018,

a club cannot register more than 25 players for the UEFA Champions League (UEFA, 2015a). Both owned

and borrowed players count against the 25-player limit. Furthermore, an upper bound on the number of
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players owned by clubs may be imposed by national football associations or by a club’s internal policies.

Players are characterized by a set of skills. The set of skills indicates, at the very least, the position(s)

on the field a player can occupy, e.g., midfield, right-wing and central attack. However, clubs may take into

account several other abilities such as speed, stamina, and technique, as well as personality traits such as

motivation and determination to succeed. Clubs typically need to compose a team with a mix of different

and compatible skills. Most often the mix of characteristics is determined with input from the coach of the

team who needs players with skills compatible with the team’s organization of play. In addition, competition

rules might also influence the mix of players. As an example, the Italian Football Federation requires that

clubs register at least four players who grew up in the club’s young selections and four players who grew up

in an Italian club’s young selection (FIGC, 2014). We refer to a skill set as a role.

Clubs consider a number of target players to purchase or borrow. A list of target players is often the

result of extensive scouting and analysis. Such analysis might rely on statistics which describe and quantify

the abilities of the players. Example statistics include goals scored, pass accuracy, speed, and air-duels won.

However, the analysis also heavily relies on the specific expertise of the scouts who observe the players in

action and can also assess skills which are difficult to translate numerically, such as leadership. In any case,

target players are to a large extent the result of screening and filtering scouting lists. For each target player,

clubs know whether the player can be purchased or borrowed (or both), their price, loan fee, and current

salary. With respect to the sale of players, the club knows which players can be sold or lent (i.e., for which

players a potential buyer or borrower exists) as well as the selling prices and loan fees. In addition, the club

may not want to sell or lend some crucial players, regardless of the price and loan fee. Finally, clubs must

take into account that players retire at an age which is typically in their late thirties (Dobson and Goddard,

2001, Ch.4), and that the retirement age varies from player to player.

The value of a football player is influenced by several factors (Dobson and Gerrard, 1999), including

skills, past performances, age, and personality. When deciding with which players to negotiate, clubs know

the current value of each player. However, the future value depends on a number of unpredictable and intan-

gible elements such as fitness, injuries, successes, and luck. Therefore, the future value of football players

(i.e., their value at future TMWs) is uncertain, and such uncertainty is transferred onto future purchase and

selling prices, loan fees, and salaries. Thus, decisions about the team composition have to be made under

uncertainty.

Therefore, the FTCP can be summarized as the problem of deciding which players to buy, sell, borrow

and lend, and when to do so, in order to maximize the expected value of the team over the planning hori-

zon, while satisfying budget limits, competition restrictions, and coach requirements. Particularly, notice
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that maximizing the expected market value of the team implicitly corresponds to maximizing a measure of

the on-the-field performance of the team. The performance of players is generally measured by a number

of role-specific statistics such as goals scored, pass accuracy, and distance run. However, accounting for

these measures simultaneously in the objective function would introduce a number of non-trivial challenges

such as summing and weighing numerically different quantities, and dealing with performances not easily

associated with statistics such as team spirit and motivation. Instead, the market value of a player, although

influenced by market dynamics, is an implicit indicator of performance which solves many of these chal-

lenges. In fact, it ensures a unique metric and measurement unit across different roles, it captures abilities

of the players which are difficult to express with other statistics and, finally, it enables decision makers to

consider the financial and on-the-field performance simultaneously.

3 Connections to the existing literature

The FTCP shares features with several well-studied problems from the research literature. However, all

these problems possess significant differences with the FTCP.

Similar to portfolio optimization problems (Cariño, Kent, Myers, Stacy, Sylvanus, Turner, Watanabe,

and Ziemba, 1994; Mulvey and Shetty, 2004; Mansini, Ogryczak, and Speranza, 2015), the FTCP can be

seen as the problem of investing in a number of assets (football players) with stochastic returns in order to

maximize some utility function (in this case the value of the team). As in cardinality-constrained portfolio

optimization problems (Chang, Meade, Beasley, and Sharaiha, 2000), the FTCP requires a fixed number of

assets (players). However, in portfolio optimization problems, fractions of a wealth are typically allocated to

different assets (e.g., stocks), while in the FTCP, decisions are of a Boolean type (i.e., a football player can

be either bought or not). As an example, while the FTCP requires a fixed number of players for each role,

cardinality-constrained portfolio optimization problems may impose a minimum and maximum proportion

of wealth to be allocated to a certain class of assets. Furthermore, the FTCP includes the possibility of

borrowing and lending players which does not directly correspond to features of portfolio optimization

problems.

In capacity renewal problems (Rajagopalan and Soteriou, 1994; Chand, McClurg, and Ward, 2000), ma-

chinery must be replaced over time due to a variety of factors such as obsolescence and technological break-

throughs (Hopp and Nair, 1994; Adkins and Paxson, 2013). Similarly, in the FTCP, players are replaced

over time due to several factors such as ageing. However, in capacity replacement problems, machinery are

not seen as assets used to maximize some utility function, rather as items needed to satisfy a given demand
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in the most efficient way. Furthermore, in capacity replacement problems, individual machines of a given

type are often indistinguishable from each other (see Mørch, Fagerholt, Pantuso, and Rakke (2017) for the

case of transportation fleets) while in the FTCP each player has specific distinguishing characteristics.

Knapsack problems also have similarities with the FTCP. A capacity (budget) has to be allocated to items

characterized by a weight (cost) and reward (value). As an example, Kirshner (2011) models the problem

of signing free-agent NBA players as a knapsack problem where rewards are measures of the ability of the

players, weights are salaries, and the capacity is the budget of the team. Gibson, Ohlmann, and Fry (2010)

use a version of the of the stochastic knapsack problem to address draft-phase team composition decisions.

Essentially, at the beginning of the seasons, teams can select players to hire according to a pick order.

Therefore, players become stochastically unavailable over time depending on the hiring decisions of other

teams. Thus, the authors model the problem as a stochastic knapsack problem where the future availability

of items is stochastic. However, significant differences can be found between the FTCP and knapsack

problems. The main difference is that the FTCP is concerned not only with adding (buying, borrowing)

items to a knapsack, but also with removing (selling, lending) them. Particularly, removal decisions not

only free knapsack space for more valuable items, but also yield a reward (selling price, lending fee) which

stochastically changes over time. Furthermore, in the dynamic stochastic knapsack problem, items generally

arrive at random times (Kleywegt and Papastavrou, 1998), while in the FTCP the current players in the team

and the focal players are available at the current and future TMWs.

Similar to the FTCP, staffing problems seek to match the supply and demand of personnel of different

categories or with different skills (Komarudin, Guerry, Feyter, and Vanden Berghe, 2013; Bruecker, den

Bergh, Belien, and Demeulemeester, 2015). However, significant differences exist. First, in staffing prob-

lems there is generally no distinction between workers in the same category (e.g., two individual nurses are

homogeneous) while in the FTCP players are heterogeneous. In fact, even if two players have the same

skills, their future career developments (and market values) are different. Second, the FTCP also considers

selling or lending players while staffing problems may consider dismissal of personnel. Finally, the FTCP

sees players as assets which increase the value of the team, and not just as items which contribute to satisfy

a demand.

As far as the football literature is considered, Tavana, Azizi, Azizi, and Behzadian (2013) propose a two-

phase method for player selection. In the first phase, the method evaluates and ranks a number of players in

order to find the best performers. In the second phase, alternative combinations of the best performers are

evaluated and the best combinations is selected for the team. This method does not consider the financial

impact of the investment in the players suggested. A similar problem is that of selecting the best line-
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up. In Boon and Sierksma (2003) and Sierksma (2006), the starting 11 are selected in such a way that

on-field quality is maximized. Quality is measured as the fitness of a player to the role assigned by the

coach. Similarly, Ozceylan (2016) proposes a combination of the analytic hierarchical process and integer

programming for selecting the best 11 from within the team. In this case, for each position on the field,

players are evaluated based on a number of criteria extracted from a popular computer game. Finally, a

related problem for hockey teams has been studied by Chan, Cho, and Novati (2012) who use a clustering

technique to identify distinct hockey player types, and then, by means of regression, quantify the relationship

between player types and team performance. With respect to the above mentioned approaches, the FTCP

comprises decisions at a higher strategic level and considers a longer planning horizon. In addition, in the

FTCP the scope is not only to select players with the desired skills and expected performances, but also

to take into account the financial soundness of the investments. The above mentioned approaches are thus

complementary with the optimization model proposed in this paper.

Finally, a similar problem has also been studied in the fantasy football literature. Analytic methods

for assisting draft-phase decisions have been proposed by Fry, Lundberg, and Ohlmann (2007) and Becker

and Sun (2016). While similarities with the FTCP exist (e.g., in both cases a fixed number of players

with different roles have to be selected), significant differences can also be found. For instance, in fantasy

football competitions a new team is built from scratch every season (or every time the game is started) while

in the FTCP, managers modify an existing team periodically. Furthermore, the pick order makes draft phase

decisions significantly different from those made in the FTCP, where club managers choose from a list of

target players that can be bought or borrowed.

The contribution of this paper to the existing literature consists of a novel optimization model for as-

sisting the management of a football club in the composition of a team of players. Particularly, the model

is designed to explicitly take into account uncertainty in the career development of football players. To our

knowledge, this problem has not been considered before in the OR literature.

4 Mathematical Model

In this section, we present a mathematical model for the FTCP. In Section 4.1 we discuss our modeling

assumptions, and then we present the notation and the formulation of the model. In Section 4.2 we comment

on how uncertain future players values may be described.
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4.1 Stochastic Programming Formulation

The mathematical model is based on the following assumptions:

• decision times correspond to TMWs,

• the current value of the players, their purchase and selling price, salary, and loan fees are known,

• the future value of the players, their purchase and selling price, salary, and loan fees are stochastic but

their probability distribution is known; Section 4.2 discusses how such distribution may be obtained,

• an ongoing contract exists between the team and the players owned, thus decisions regarding the

length and renewal of contracts are addressed in a separate decision problem,

• loans last until the next TMW.

Notice that current purchase and selling prices, loan fees and salaries, are in reality the result of negotiations.

However, in general, market operators have an understanding of closing prices. Alternatively, an instance

of the FTCP can be solved at any step in the negotiation phase to assess the option of buying (selling,

borrowing, lending) a player after new bids.

We model the FTCP as a multistage stochastic program. Multistage stochastic programming is a frame-

work for modeling problems involving a sequence of decisions under uncertainty, conditional on the real-

ization of random events, see e.g., the textbooks Kall and Wallace (1994), Birge and Louveaux (1997) and

King and Wallace (2012). The FTCP involves a sequence of team composition decisions under uncertainty.

Figure 1 sketches the interplay between decisions and market information. At every TMW t, the market

status ξt(ωt) – which will be formally introduced shortly – is determined by the realization of a random

event ωt , and the club is to make team composition decisions. Thus, at TMW t the club knows the market

status up to ξt(ωt) and the future market status only in a probabilistic sense. Let P be the set of players

ξ1(ω1)

↓

T MW1

Decisions

ξ2(ω2)

↓

T MW2

Decisions

ξ3(ω3)

↓

T MW3

Decisions

ξ4(ω4)

↓

T MW4

Decisions

Figure 1: Multistage Stochastic Program Decision Timing

upon which decisions must be made. P includes both the players already in the team (which can thus be

sold or lent) and the target players. Let T = {1,2, . . .} be the set of TMWs (i.e., stages). Let R be the set of

roles. A role is a well-defined skill set which typically includes, but is not limited to, the position on the field
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of play (see Section 2). Finally, let Pr ⊆P the set of player having role r. Let ω1, . . . ,ω|T | be a random

process defined on some probability space (Ω,F,P), where Ω is the set of elementary outcomes, F is the set

of possible events, and P is a measure of the likelyhood of the events. As an example, ωt may represent the

joint career development of the players in P until TMW t.

The FTCP relies upon the following uncertain parameters. For player p at time t and outcome ωt ,

define Vpt(ωt) as the player value, Spt(ωt) as the price to receive for selling the player, Ppt(ωt) as the

price to pay to buy the player, Ipt(ωt) as the fee to pay borrow the player, Opt(ωt) as the fee to receive

to lend the player, and Wpt(ωt) the player salary. Notice that, for a given player and TWM, the purchase

and selling price are assumed, without loss of generality, different. This is done to account for different

transaction costs born by buyers and sellers. Similarly, the fee to pay for borrowing a player is generally

different from the fee to receive for lending the same player. The player vector for player p at TMW t

is then ξpt(ωt) = (Vpt(ωt),Spt(ωt),Ppt(ωt), Ipt(ωt),Opt(ωt),Wpt(ωt)). Let the market status at TMW t be

ξt(ωt) = (ξpt)p∈P . Knowledge of (Ω,F,P) is not necessary, but we assume the probability distribution of

ξ = (ξ1, . . . ,ξ|T |(ω|T |)) is known and that ξ1 is deterministic.

The FTCP relies upon the following known parameters. Let N̄ be the maximum number of players the

club can own. Let N be the number of player which can participate in competitions. Let Nr be the number

of players required (typically by the coach) in role r. Let KO
pt be a binary parameter equal to 1 if the club

is available to lend player p at TMW t, 0 otherwise. Let KS
pt be a binary parameter equal to 1 if the club is

available to sell player p at TWM t, 0 otherwise. Let KI
pt be a binary parameter equal to 1 if the club can

borrow player p from the owning club at TMW t, 0 otherwise. Let KP
pt be a binary parameter equal to 1 if

the club can buy player p from the owning club at TMW t, 0 otherwise. Note that parameters KS
pt and KO

pt

are set by the decision-maker club, i.e., the club which is solving a FTCP. Parameters KI
pt and KP

pt depend

instead on the availability of the club which currently own player p, to lend or sell, respectively, the player

to the club which is solving a FTCP. Let Āp the retirement age for player p and Apt their age at time t. Let

Yp be equal to 1 if player p belongs to the team at the beginning of the planning horizon, 0 otherwise. Let

Bt be the budget of the club for time t and ρ be the discount rate. Notice that we consider the budget to be a

deterministic parameter set by the club’s ownership or management independent of the random outcomes.

Finally, the club’s decisions are represented by the following decision variables. Variable ypt(ωt) is

equal to 1 if player p belongs to the club at the end of TMW t given outcome ωt , 0 otherwise. Variable

yP
pt(ωt) is equal to 1 if player p is purchased during TMW t given outcome ωt . Variable yS

pt(ωt) is equal to

1 if player p is sold during TMW t given outcome ωt . Variable lI
pt(ωt) is equal to 1 if player p is borrowed

from another club during TMW t given outcome ωt . Variable lO
pt(ωt) is equal to 1 if player p is lent to
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another club during TMW t given outcome ωt . Variable v(ω|T |) represents the sunset value of the team

given outcome ω|T |, i.e., the value of the team after the end of the planning horizon. The FTCP is hence

max Eξ

{
∑

t∈T
∑

p∈P

[
1

(1+ρ)(t−1)Vpt(ωt)ypt(ωt) (1a)

−Ppt(ωt)yP
pt(ωt)+Spt(ωt)yS

pt(ωt) (1b)

+Opt(ωt)lO
pt(ωt)− Ipt(ωt)lI

pt(ωt) (1c)

−Wpt(ωt)
(
ypt(ωt)+ lI

pt(ωt)− lO
pt(ωt)

)]
+

1
(1+ρ)|T |

v(ω|T |)

}
(1d)

subject to

yp1(ω1) = Yp + yP
p1(ω1)− yS

p1(ω1) p ∈P, (1e)

ypt(ωt) = yp,t−1(ωt)+ yP
pt(ωt)− yS

pt(ωt) p ∈P, t ∈T \{1}, (1f)

∑
p∈P

ypt(ωt)≤ N̄ t ∈T , (1g)

∑
p∈P

[
ypt(ωt)+ lI

pt(ωt)− lO
pt(ωt)

]
= N t ∈T , (1h)

∑
p∈Pr

[
ypt(ωt)+ lI

pt(ωt)− lO
pt(ωt)

]
≥ Nr r ∈R, t ∈T , (1i)

ypt(ωt)− lO
pt(ωt)≥ 0 p ∈P, t ∈T , (1j)

ypt(ωt)+ lI
pt(ωt)≤ 1 p ∈P, t ∈T , (1k)

lO
pt(ωt)≤ KO

pt p ∈P, t ∈T , (1l)

yS
pt(ωt)≤ KS

pt p ∈P, t ∈T , (1m)

lI
pt(ωt)≤ KI

pt p ∈P, t ∈T , (1n)

yP
pt(ωt)≤ KP

pt p ∈P, t ∈T , (1o)

Apt(ypt(ωt)+ lI
pt(ωt))≤ Āp p ∈P, t ∈T , (1p)

∑
p∈P

[
Ppt(ωt)yP

pt(ωt)+ Ipt(ωt)lI
pt(ωt)

−Spt(ωt)yS
pt(ωt)−Opt(ωt)lO

pt(ωt)
]
≤ Bt t ∈T , (1q)

v(ω|T |) = ∑
p∈P

Vp|T |(ω|T |)yp|T |(ω|T |), (1r)

ypt(ωt),yP
pt(ωt),yS

pt(ωt), lI
pt(ωt), lO

pt(ωt) ∈ {0,1} p ∈P, t ∈T , (1s)
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v(ω|T |)≥ 0. (1t)

Objective function (1a)-(1d) consists of maximizing the expected net present value of the team, which

includes the value of the players owned minus the money spent for buying and borrowing players and

paying salaries, plus the income generated by selling and lending players. Notice that salaries are not

paid for players lent to other clubs. The FTCP has, in principle, an infinite planning horizon which we

approximate by |T | TMWs. This might generate an end-of-horizon effect which causes decision variables

in the last stages to behave as if the corresponding decisions had no future consequences. To mitigate this

effect we include the sunset value in the objective function. This is equivalent to stating that after |T |

TMWs the decision maker wants to have a team of as high value as possible. Constraints (1e)-(1f) ensure

the balance between players joining and leaving the club, for the first and the following TMWs, respectively.

Constraints (1g) and (1h) ensure that the club does not own more than N̄ players and that exactly N players

are registered for competitions, respectively. Constraints (1i) ensure that the squad has at least Nr players

in each role r. Constraints (1j) and (1k) ensure that players are lent only if owned, and borrowed only if

not owned, respectively. Furthermore, constraints (1l), (1m), (1n), and (1o) state whether a player can be

lent, sold, borrowed and purchased, respectively. Constraints (1p) ensure that players are not considered

after their retirement. Constraints (1q) ensure that the net spending can be covered by the available budget.

Constraint (1r) sets the sunset value as the value of the players owned at the end of the planning horizon.

Finally, constraints (1s)-(1t) set the domain for the decision variables.

Finally, notice that the dependence of the decision variables on ωt indicates that decisions are only made

once the outcome of ωt is known. That is, decisions at time t are only based on information available at t and

on probabilistic information about ξt+1, . . . ,ξ|T |, i.e., they are nonanticipative. More formally, it can be said

that decisions at time t are Ft(ξ1, . . . ,ξt)-measurable, where Ft(ξ1, . . . ,ξt) is the sigma-algebra generated

by ξ1, . . . ,ξt , with Ft(ξ1, . . . ,ξt)⊆Ft+1(ξ1, . . . ,ξt+1)⊆ ·· · ⊆F .

4.2 Possible Stochastic Models for the Uncertain Parameters

Model (1) requires a probability distribution of ξ , the collection player vectors (i.e., the vectors containing

future values, prices, loan fees, and salaries). Below we point out possible ways to estimate the probability

distribution.

• Distribution of forecasting errors. It can be argued that football clubs rely on some projection of the

player vector for the future when evaluating the acquisition or sale of players. This projection might

be stated more or less formally and may or not be based on some analytic support. A probability dis-
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tribution of future player vectors might be obtained by analyzing how accurate the club’s projections

have been in the past. That is, future player vectors may be represented as a function of a deterministic

term representing the club’s projection, and a random term representing the projection error. Then a

probability distribution of past projection errors would suffice.

• Property Matching. If complete probability distributions cannot be achieved, it may be possible to

estimate statistical properties of the player vectors. As an example, data might show that forwards

who, by the age of 25, have scored less than 10 goals per season, are worth on average e15 mil-

lion, with a standard deviation of e5 million. Property matching (see Høyland and Wallace (2001)

and Høyland, Kaut, and Wallace (2003)) can be used to generate scenarios matching the statistical

information available.

• Handpicked scenarios. If none of the above methods is readily applicable (e.g., when historical data

is not available) a simple alternative is to rely on the club’s expert opinion on possible future career

developments for the players. That is, a club’s manager may envisage alternative career scenarios

and value developments for a player and the corresponding likelihoods. It can be argued that such

endeavor is preferable to completely relying on a unique projection (King and Wallace, 2012, Ch.4).

Finally, if data is available, probability distributions may be estimated through regression analysis as we

illustrate in Section 5.

5 Computational Study

In this section, we present a computational study based on the English Premier League (EPL). The scope of

this section is: (a) to illustrate the expected team value development attainable with model (1), (b) to assess

whether the model might help to improve current decisions and, finally, (c) to understand the drivers of the

value development. When possible and meaningful, we compare the decisions and results of our model to

those of the corresponding clubs in the EPL.

5.1 Instances

Instances are based on the case of the EPL 2013/14 using data available on TransferMarkt (see www.transfermarkt.com).

Season 2013/14 is the most recent season which allows us to assess the model on a sufficiently long planning

horizon. Our case study considers the 20 teams in the competition, see Table 1. Each team becomes in turn

the focal team, that is, the team a FTCP is solved for while dealing with the summer 2014 TMW (TMW14 -
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in preparation to season 2014/15). For each focal team, the set P is made of the players in the team during

season 2013/14 and a number of target players. In general, target players are sensitive information known

only to the club managers, thus not publicly available. Therefore, we generated target players based on the

actual transactions made by the clubs. Particularly, we adopted the following procedure:

1. We sorted the 20 teams in decreasing order of their value during season 2013/14.

2. We divided the teams into groups A through E of similar value, see Table 1.

3. For each group we defined a set of target players as the set of all players purchased or borrowed by

the teams in the group during TMW14.

4. Teams in the same group will have the same target players.

We believe establishing the set of target players in this manner reasonably approximates the players the

focal club might consider. In fact, a subset of the target players are exactly the players the club bought or

borrowed, and thus were certainly target players. In addition, it contains target players which were bought

by teams with comparable purchase power and appeal. The set of target players is valid for the entire

planning horizon. When solving the FTCP for different focal teams, it is possible for the purchase or rental

of the same player to be recommended by the optimal solutions of multiple focal teams. Thus, the results

we present should be interpreted as the outcome for the focal team had they implemented the solution to the

FTCP.

Table 1: Teams in the English Premier League 2013/14

Group Team Group Team

A Chelsea FC (CH) C West Ham United (WH)

A Manchester United (MU) C Stoke City (ST)

A Manchester City (MC) D Swansea City (SW)

A Arsenal FC (AR) D Aston Villa (AV)

B Tottenham Hotspur (TO) D Southampton FC (SO)

B Liverpool FC (LI) D Norwich City (NO)

B Everton FC (EV) E Cardiff City (CC)

B Newcastle United (NU) E West Bromwich Albion (WB)

C Sunderland AFC (SU) E Hull City (HU)

C Fulham FC (FU) E Crystal Palace (CP)
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For the deterministic parameters of the problem we set the following default values. For each player, the

role, age, and current market value are known. Roles correspond to positions on the field of play. All the

roles considered by TransferMarkt have been included. The minimum number of players for each role (Nr)

corresponds to the least number of players for the role among all the teams considered. Consistently with

EPL regulations, N = 25 players are used for competitions while the maximum number of players is set to

N̄ = 48 (the maximum team size among the 20 clubs). For the entire planning horizon, a player can be lent

(KO
pt), sold (KS

pt), bought (KP
pt), or borrowed (KI

pt) if they were lent, sold, bought, or borrowed, respectively,

during TMW14. The retirement age is set to 42 years for all players consistently with the age of the oldest

player in the EPL 2013/14. All players reaching the age limit during the planning horizon are automatically

considered sellable. The discount rate is set to 7%. The budget of the team Bt is set equal to the net spending

of the actual club during TMW14. That is, we set Bt =max{E−I,0}, for each t ∈T , where E is the amount

of the actual expenses of the club in TMW14 (actual player purchases and rentals) and I is the amount of

the actual income of the club in TMW14 (actual player sales and loans). The same budget is valid for every

TMW in the planning horizon. This ensures that our model cannot spend more than the actual club though

avoiding representing a position of debt. We assess our budget assumptions in Section 5.6. The planning

horizon |T | is three summer TMWs and every TMW is considered a new stage, that is, new information

is obtained at each TMW. We believe this is a fair length for the planning horizon as it is arguably difficult

to foresee the number and type of new players emerging from young selections, and thus updates to target

lists. However, the impact of the length of the planning horizon and of the number of stages on the results is

assessed in Section 5.6.

5.2 Modeling the Uncertainty

In this section we describe how we model the uncertain parameters for our case study. We remind the reader

that uncertain parameters, summarized by the player vector ξpt(ωt), for every p ∈P and t ∈ T , are the

value of the player, the selling price, the purchase price, the fees for borrowing and lending, and the salary.

First, we illustrate how we model the player value, and then we describe how we model the remaining

parameters.

We use a regression model to forecast the future value of a player given current available information.

While thorough regression analysis can itself be the subject of a much deeper investigation, for the scope of

this paper we look for a regression model with sufficient forecasting ability. We use as explanatory variables

the current value of the player, their age, and their role. The response variable is the value of the player

during the next TMW. Particularly, we seek a regression model showing the following properties:
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• sufficiently high proportion of the variability of the dependent variable predictable from the explana-

tory variables, measured by the coefficient of determination, R2,

• sufficiently high statistical significance of the explanatory variables, measured by the p-value,

• non-negative response and no evidence of heteroscedasticity.

Regression analysis was performed using historical EPL data from season 2011/12 to season 2016/17 ob-

tained from www.transfermarkt.com. Each of the 2095 records shows the value of a player, their current

age and role, and value of the same player during the following season. After testing several regression

models we decided upon the regression model described by equation (2):

4
√

Vpt = α 4
√

Vp,t−1 +βAp,t−1 + ∑
r∈R

γrδ (p,Pr)+ ε, p ∈P, t ∈T \{1} (2)

Particularly, the value of the coefficients of model (2) is summarized Table 2, while δ (p,Pr) is the indicator

function, i.e., δ (p,Pr) = 1 if p ∈Pr, 0 otherwise. The model has R2 = 0.9874, the p-value is smaller than

2.2−16, and the residuals-fitted plots do not show evidence of heteroscedasticity. Furthermore, the error term

can be safely assumed normally distributed with ε ≈ N(0,0.17912). Notice, in model (2), that the future

player value, significantly depends on the current value and that, as intuition suggests, the value of the player

decreases with age. Notice also that the model does not include an intercept term. This is mainly due to

the difference of value between players in different roles. However, by means of the term in δ (p,Pr), the

model creates a role-specific intercept γr. Therefore, in what follows, for every TMW and for every player,

the market value during the following TMW is a random variable described by equation (2).

As far as the other random parameters are concerned, the available 143 purchase records and 195 sales

records for TMW14 show that the average purchase price to average value ratio is 1.22, while the average

selling price to average value ratio 0.97. That is, it appears that, on average, the transaction fee is heavier

on the buyer than on the seller. Note that the records include several transactions with clubs not in the

EPL, thus a sale record does not necessarily correspond to a purchase record. Not many records of loan

fees were available. The 17 available records suggest a loaning fee of approximately 15% of the current

value. Therefore, in our computational study, we set the purchase and selling price of a player 1.22 and 0.97

times their current value, respectively, and the borrowing and lending fee 0.15 times their current value.

Finally, we set the player salary as 10% of the current market value. Sensitivity analysis with respect to this

parameter is reported in Section 5.6.
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Coefficient Value

α 0.860081

β −0.024199

γkeeper 0.883168

γattackingmid f ielder 0.884657

γcentralmid f ielder 0.864462

γde f ensivemid f ielder 0.874801

γle f twing 0.888214

γrightbacks 0.879782

γsecondarystriker 0.870941

γcentreback 0.867006

γle f tback 0.866930

γrightmid f ielder 0.754924

γcentre f orward 0.873991

γle f tmid f ielder 0.810373

γrightwing 0.856120

Table 2: Value of the coefficients of regression model (2)

5.3 Scenario Generation

Equation (2) generates a continuous probability distribution for ξ = (ξt)
|T |
t=1, which in turn makes model (1)

intractable. Therefore, in order to solve model (1), the continuous distribution is approximated by means of a

scenario tree where each scenario represents a complete realization of ξ for the entire planning horizon. An

example three-stage scenario tree in depicted in Figure 2. The example scenario tree contains two possible

conditional realizations of ξt of per stage (i.e., four scenarios S1, . . . ,S4).

t
1

2

3

S1 S2 S3 S4

Figure 2: Example three-stage scenario tree
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(A) 24 year-old center forward (B) 33 year-old center back

Figure 3: Example scenario trees for two players

We obtain scenarios by sampling, for each stage and for each player, realizations of ε from the underly-

ing N(0,0.17912) distribution and thus generating the corresponding ξpt realizations. Particularly, we use 30

samples for two-stage problems, and 18 samples per stage (324 scenarios) for three-stage problems. These

sample sizes were chosen by performing the in-sample stability test described by Kaut and Wallace (2007).

Particularly, the in-sample stability test ensures that the results discussed in Section 5.5 are not biased by

the specific set of scenarios used, i.e., the optimal objective value is approximately the same for any sample

of the same size. Therefore, using more scenarios would not lead to stability improvements which would

justify the increased complexity. Figure 3 reports two example scenario trees. It can be noticed that for the

33-year old player, most scenarios envisage a value decline by the end of year 3.

5.4 Size of the Problem and Complexity

We implemented the FTCP using a node formulation. That is, we created one copy of the decision variables

for each node in the scenario tree (see, e.g., Pantuso, Fagerholt, and Wallace (2015) for an example node

formulation). Thus, for instance, variables ypt(ωt) are replaced by variables ypn, where n is a node in the

scenario tree. As an example, the scenario tree in Figure 2 contains seven nodes, thus we would have

variables ypn for p ∈P and n ∈ {1, . . . ,7}. Similarly, the constraints of the FTCP must hold for every

node in the scenario tree. In general, node formulations have significantly fewer decision variables and

constraints than scenario formulations. In scenario formulations, a copy of the decision variables is created

for each stage and scenario. As an example, ypt(ωt) would be replaced by ypts where s is a scenario, and the

constraints of the FTCP must hold for every scenario. However, given a number of scenarios S, the number

of nodes in a scenario tree is (significantly) smaller than |T |× S. The node formulation corresponding to

problem (1) is provided in Appendix A.

The problems we solved for the results in Section 5.5 have 105,000 variables on average (minimum

82,000 and maximum 126,000) and 173,000 constraints on average (minimum 137,000 and maximum

208,000). In the sensitivity analysis of Section 5.6, the biggest problem we solved (i.e., the case with

four periods and three stages) had on average 205,000 variables and 339,000 constraints.

Model (1) was implemented and solved using Cplex 12.6.2 Java callable libraries. All tests have been

run on a Linux machine with 24.7 GB RAM and Six-Core AMD Opteron 2.4 GHz CPU. We could solve the
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base case to an optimality gap of 0.5% in less than two-hours in the worst case.

5.5 Results

We present the results obtained by solving an instance of the FTCP for each team in the EPL 2013/14

while dealing with TMW14. Figure 4 illustrates the three-year team value development in the solution of

model (1) and in real life by the corresponding teams. In addition, error bars show the domain of the team

value distribution for the second and third stage (we remind the reader that future team values are scenario-

dependent). A number of elements emerge from Figure 4. The first observation is that the expected team

value provided by model (1) is almost always higher than the actual team value realized by the clubs (except

for the cases of Crystal Palace, Southampton FC and West Ham United upon which we comment later). The

second observation can be made by looking at the error bars in Figure 4. The error bars show, for seasons

2015/16 and 2016/17, the range of values of the team value attainable by implementing the solutions to

model (1). It can be noticed that the actual realized value for a team often falls in the lowest part of the team

value distribution, or even below. This corresponds to saying that the solutions to the FTCP exhibit a high

probability of performing better than actual solutions. In some cases, solutions to the FTCP perform better

than actual realizations even in the worst-case realization of the player values (see e.g., the cases of Aston

Villa, Chelsea FC and Fulham FC). Thus, Figure 4 suggests that model (1) has potential to help decision

makers improve current decisions, provided that the assumptions made reflect the actual preferences and

operating scenario of the actual clubs.

Figure 4: Expected team value progression in the solutions to the FTCP versus actual (realized) team values.

Error bars indicate the support of the team value distribution for each season.

It can also be noticed that cases exist where actual decisions made by the clubs outperform expected

results from model (1). Cases like these are completely normal. Stochastic programs provide solutions

bearing the scenario-wise distribution of the results (team value in this case) with the highest expected

value. Given any individual realized scenario, there may be a different course of action that performs better

than the solution that maximizes the expected value. However, the expectation of such solution is not higher

than the one provided by the solution to the stochastic program. With this in mind, we can understand the

results of Crystal Palace, Southampton FC and West Ham United in Figure 4. That is, the decisions made by

the clubs turned out to be better than the solution to the FTCP for the particular scenario which materialized.

However, beforehand, such solutions would have had a lower expected value than the solutions to the FTCP.
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As an example, we tested the effects of forcing model (1) to make, for the case of Southampton FC, the

same purchases and sales made by the actual club. For this case, we obtained the expected team value is

lower than the optimal by e10.75 million in season 2014/15, e12.45 million in season 2015/16, and e14.18

million in season 2016/17.

Table 3: Compound Annual Growth Rate in real life and in the model

Team Actual CAGR[%] Model Expected CAGR [%]

Arsenal FC 6.65 9.84

Aston Villa -7.58 25.07

Cardiff City -16.48 30.24

Chelsea FC -0.24 6.50

Crystal Palace 21.64 33.99

Everton FC 11.83 10.62

Fulham FC 8.93 21.17

Hull City -11.46 24.31

Liverpool FC 10.03 11.52

Manchester City 3.12 1.03

Manchester United 1.62 0.82

Newcastle United -3.07 17.16

Norwich City -1.75 21.12

Southampton FC 10.87 22.00

Stoke City 9.94 14.35

Sunderland AFC -4.78 16.58

Swansea City 1.23 16.59

Tottenham Hotspur 7.93 8.42

West B. Albion 3.20 19.39

West Ham United 25.99 17.17

Finally, we can observe that the expected growth of the value of the team tends to be steady, with the final

expected value of the team being higher than the initial value in almost all cases, and significantly higher in

some cases. Even if the solution to the FTCP is not the best in the short run (see e.g., the cases of Hull City

and West Bromwich Albion), the team value growth is maintained throughout the planning horizon and the
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solution turns out better in the long run. This is confirmed also by the expected Compound Annual Growth

Rate (CAGR) from season 2014/15 to season 2016/17 reported in Table 3. The CAGR represents the average

annual growth rate of an investment for a given period of time. It is calculated as (F/I )(1/|T |)−1, where

F represents the final value of the team and I represents the initial value of the team, i.e., the value of the

team before TWM14. It can be noticed that the expected CAGR provided by the FTCP is always positive

and in most cases higher than the actual CAGR.

Figure 5: Number of purchases and sales and their average age in the first-stage solution to the FTCP and in

real life.

Patterns in the solutions to the FTCP help explain the drivers of the expected team value growth. Figure 5

reports the first-stage solution to model (1) in terms of number of players bought and sold as well as average

age of players bought and sold. In addition, it reports the same information for the actual decisions made by

the corresponding clubs. Model (1) suggests, in general, a comparable but smaller number of purchases and

sales, thus fewer transactions, with respect to actual decisions. Transactions are performed only when these

lead to a higher expected team value. In addition, the model tends to suggest buying at an age slightly above

20 and selling at an age close to 30. In most cases, the model buys at an age younger than actual decisions,

and sells at an age older than actual decisions. Thus, a key for expected team value growth is to be found in

fewer but targeted investments in cheaper, younger players with high growth potential.

5.6 Sensitivity of the Results

We illustrate how the results are influenced by the available budget, by the salary of the players, by the

length of the planning horizon and by the number of stages.

Figure 6 illustrates how the expected team value changes as a function of the available budget. Par-

ticularly, it reports the progression of the expected team value when the base budget (see Section 5.1) is

incremented and decremented by e10 and e20 million. As intuition suggests, higher budgets foster higher

values of the team due to the increased capability of hiring valuable and high potential players. However, it

can also be observed that, for certain teams with already high budgets (e.g., Liverpool FC and Manchester

United), higher budgets help increasing the here-and-now value of the team but do not necessarily ensure

a steeper growth and a higher final value. This has to do with the fact that, in our instances, as in real life,

the number of talents with high growth potential is not unlimited. On the other hand, teams with smaller

budget obtain, by means of extra budget amounts, slightly steeper growth rates and, in general, higher final
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values (see, e.g., Fulham FC and Cardiff City). Finally, notice that for certain teams with an already low

base-case budget, the value progression corresponding to a budget decrease is not shown. This is due to

the fact that model (1) becomes infeasible, i.e., the budget is not sufficient to ensure a team composition

with the desired characteristics (see, e.g., Norwich City and Stoke City). In real-life, the team would have

to revisit the requirements of the coach or consider additional target players of lower current value. Finally,

Figure 6 sheds light on how model (1) could be used by actual clubs to support budget allocation decisions,

by assessing the expected team value progression as a function of the budget allocated.

Figure 6: Expected team value for the base case and with a budget increase of e10 and e20 million, and a

budget decrease of e10 and e20 million.

As far as salaries are concerned, the base case assumes that the salary of a player is 10% of their value

(see Section 5.1). We also run the tests with salaries set to 5%, 15%, and 20% of the value of the player.

However, the results illustrated for the base case are to a very large extent confirmed also with the other

salary levels and no significant changes in the team value or in the solutions could be observed.

Finally, we tested the sensitivity of the results to the number of stages and periods. That is, we test the

effects of considering a longer planning horizon, as well as considering fewer stages than periods, i.e., as-

suming that from some TMW on the decision maker obtains perfect knowledge about the future. Particularly,

considering fewer stages than periods is a simplification which reduces the size of the problem but approxi-

mates the original problem. We remind the reader that the base case has three periods and three stages, that

is, new information is obtained at every TMW. Particularly, we assessed the following cases: three periods

and two stages, four periods and two stages and four periods and three stages. It emerges that the two-stage

problems, both in the case with three and four periods, significantly overestimate the future value of the

team. Particularly, for the two-stage three-period case, the expected team value in season 2016/17 is on

average 13.7% (approximately e35 million) higher than that reported by three-stage three-period models.

This is due to the fact that, in two-stage problems, the future after the first TMW is deterministic. Thus, the

problems can adapt their solutions to the specific scenario in the best possible way, since there is no more

uncertainty to deal with. However, such situation does not correspond to what happens in real-life decision

problems, where the decision maker faces uncertainty at every TMW. This also illustrates the benefit from

modeling the interplay between decisions and uncertainty in a more strict way.
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6 Conclusions and Future Research

In this article we formally described the decision problem, faced by football clubs, of investing in profes-

sional football players. We introduced a novel stochastic programming model for composing a football team

with the desired mix of skills such that the expected value of the team is maximized. In addition, the model

takes into account competition regulations and budget limits, as well as the uncertainty in the future market

value of the players.

The model has been tested on a case study based on the English Premier League 2013/2014. Our

results show that the model has a significant potential to improve real-life decisions in actual football clubs.

Solutions to the model ensure a steady growth of the value of the team generated primarily by investments in

young prospects. The expected growth is in most cases higher than the actual growth of the corresponding

real-life teams. Results also show that the budget is an important driver of growth, and that reducing the

number of stages leads to overestimated expected team values. In addition, a number of future research

avenues can be pointed out.

The FTCP introduced in this paper assumes that ongoing contracts exist between the club and the players

owned. However, contract length and contract renewal decisions also impact team composition decisions.

As an example, it is arguable that clubs prefer to evenly spread the expiration of ongoing contracts as this

would prevent replacing too many players between two seasons. In addition, the duration of the contracts

or, more precisely, the time-to-expiration, has an impact on selling prices. In fact, potential buyers gain

market power due to the possibility of signing the player as a free agent after the expiration of the contract.

Therefore, a possible extension of the FTCP might include decisions regarding the length and renewal of

contracts.

In this paper we used the market value as an indicator of the financial impact the players. A possible

extension of this work might look at ways to explicitly consider on-the-field performance. Performance is

typically quantified by means of a set of role-specific and numerically heterogeneous statistics. Additional

research is needed to shed light on: (1) how to sum and weigh numerically different statistics (e.g., goals

scored and pass accuracy) in an attempt to obtain an overall measure of team performance, (2) how to quan-

tify intangible performances such as “making the correct movement” and “occupying the correct position”,

and (3) how to translate individual performance into competitiveness of the team. In the model we presented

it is possible to enforce some level of (expected) performance by requiring a certain number of players with

a sufficient value of given statistics through constraints (1i).

Recently, a new type of transaction is emerging where a club purchases a player but leaves them to the
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selling club (as a loan) for one or more seasons. This is especially done by top clubs who purchase young

prospects but leave them to smaller clubs until they reach maturity. Modeling the joint purchases-and-loan

might improve the realism of the model.

Finally, one implicit assumption in this paper is that the probability distributions of the player values are

independent of decisions. However, one might argue for cases in which the distribution of the value of a

player is influenced by the team they play for or for a positive correlation between the value of players in the

same team. To model such situations one requires multistage stochastic programs with endogenous uncer-

tainty. To the best of our knowledge, methods have been proposed for the cases where decisions influence

the timing of new information (Apap and Grossmann, 2016) and where decisions influence the probability

measure on a fixed sample space in a two-stage problem (Laumanns, Prestwich, and Kawas, 2014; Peeta,

Salman, Gunnec, and Viswanath, 2010). However, no tractable method for multistage stochastic programs

where decisions change the probability distribution at every stage is available. Thus, in order to assess the

impact of decisions influencing the stochastic values of the players, a methodological advancement of the

field beyond the scope of this paper is necessary.
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Appendix A A Node Formulation for the FTCP

In order to obtain a node formulation of model (1) the notation presented in Section 4 must be adjusted and

complemented. Given a scenario tree which represents the uncertain parameters (see Section 5.3), let N

be the set of nodes in the scenario tree, where 0 is the root node, and N L ⊂N is the set of leaf nodes,

that is the nodes at the last stage. Let a(n) be the parent node of node n, Πn the probability of node n, and

t(n)∈T the stage (TMW) corresponding to node n. A copy of the decision variables is created for each node

in the scenario tree. Particularly, variables ypt(ωt) are replaced by variables ypn. Notice, therefore, that the
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combination stage-realization, that is t−ωt is fully captured by the node n. Thus, a node n∈N represents a

possible state at the corresponding TWM, and captures a joint realization of the random variables. Similarly,

variables yP
pt(ωt), yS

pt(ωt), lI
pt(ωt), lO

pt(ωt), and v(ωt) are replaced by yP
pn, yS

pn, lI
pn, lO

pn and vn, respectively.

In a similar fashion, all random variables in model (1) are replaced by the corresponding node realizations.

As an example, the player value Vpt(ωt) is replaced by a number of realizations Vpn, with t(n) = t. Instead,

the deterministic parameters remain unchanged. The node formulation corresponding to model (1) is thus:

max ∑
n∈N

∑
p∈P

Πn

[
1

(1+ρ)(t(n)−1)Vpnypn (3a)

−PpnyP
pn +SpnyS

pn (3b)

+OpnlO
pn− IpnlI

pn (3c)

−Wpn
(
ypn + lI

pn− lO
pn
)]

+ (3d)

∑
n∈N L

Πn
1

(1+ρ)|T |
vn (3e)

subject to

yp0 = Yp + yP
p0− yS

p0 p ∈P, (3f)

ypn = yp,a(n)+ yP
pn− yS

pn p ∈P,n ∈N \{0}, (3g)

∑
p∈P

ypn ≤ N̄ n ∈N , (3h)

∑
p∈P

[
ypn + lI

pn− lO
pn
]
= N n ∈N , (3i)

∑
p∈Pr

[
ypn + lI

pn− lO
pn
]
≥ Nr r ∈R,n ∈N , (3j)

ypn− lO
pn ≥ 0 p ∈P,n ∈N , (3k)

ypn + lI
pn ≤ 1 p ∈P,n ∈N , (3l)

lO
pn ≤ KO

p,t(n) p ∈P,n ∈N , (3m)

yS
pn ≤ KS

p,t(n) p ∈P,n ∈N , (3n)

lI
pn ≤ KI

p,t(n) p ∈P,n ∈N , (3o)

yP
pn ≤ KP

p,t(n) p ∈P,n ∈N , (3p)

Ap,t(n)(ypn + lI
pn)≤ Āp p ∈P,n ∈N , (3q)
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∑
p∈P

[
PpnyP

pn + IpnlI
pn

−SpnyS
pn−OpnlO

pn
]
≤ Bt(n) n ∈N , (3r)

vn = ∑
p∈P

ypn, n ∈N L, (3s)

ypn,yP
pn,y

S
pn, l

I
pn, l

O
pn ∈ {0,1} p ∈P,n ∈N , (3t)

vn ≥ 0 n ∈N L. (3u)
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